	DG TAXUD – CS/RD Technical Architecture

	
	Ref: CSRD-ARC

	



	ORIGINATOR: DG TAXUD
	ISSUE DATE: 23/05/2011
	VERSION: 2.00-EN

	CUST/DEV Project

SUBJECT:

CS/RD Technical Architecture
[CSRD-ARC]


Document history
	Edi.
	Rev.
	Date
	Description
	Action(*)
	Pages

	0
	01
	01/06/2010
	First version.
Submitted for Internal technical review.
	I
	All

	0
	02
	08/07/2010
	Implementing internal technical review comments.

Submitted for Internal QC review.
	I, R
	As required

	0
	10
	12/07/2010
	Implementing internal QC review comments.

Submitted for Review (SfR) to DG TAXUD.
	I, R
	As required

	1
	00
	01/09/2010
	Implementing QA review comments.

Submitted for Acceptance (SfA) to DG TAXUD.
	I, R
	As required

	1
	01
	07/04/2011
	Implementing review comments.
	I, R
	As required

	1
	10
	08/04/2011
	Implementing internal QC review comments.

Submitted for Review (SfR) to DG TAXUD.
	I, R
	As required

	1
	11
	27/04/2011
	Reworked based on informal comments issued by TAXUD on 18/04/04.

Re-submitted for Review (re-SfR) to DG TAXUD.
	I, R
	As required

	1
	20
	20/05/2011
	Implementing review comments.
	I, R
	As required

	2
	00
	23/05/2011
	Implementing QA review comments.

Submitted for Acceptance (SfA) to DG TAXUD.
	I, R
	As required


Change History

	Date
	Description

	10/05/2011
	Document header formatting, Document History change.

	10/05/2011
	Chapter 1: Abbreviations and acronyms table change, Applicable documents change, 

	12/05/2011
	Chapter 2: CS/RD modes alignment with CS/RD2_SPM&REQ document.

	12/05/2011
	Chapter 3: CSRD actors correction accordingly with the diagrams and Use case descriptions.

	15/05/2011
	Chapter 4: Entities Adding in Users and Groups package, Removing MessageConversion interface from section 4.5 Services.

	17/05/2011
	Chapter 5: Clarification of the Use-case realization.

	19/05/2011
	Chapter 6: Clarification of the Transformation Server (Node)

	20/05/2011
	Chapter 7: Correction and clarification of the used technologies.


(*) Action: I = Insert, R = Replace

TABLE OF CONTENTS

3Change History

1
Introduction
9
1.1
Objective of this document
9
1.2
Structure of this document
9
1.3
Intended audience
10
1.4
Abbreviations and acronyms
10
1.5
Reference documents
12
1.6
Applicable documents
12
2
High-level technical architecture
14
2.1
Overview of the system
14
2.2
Architecturally important use-cases
15
2.3
Communication Modes
15
2.4
Security
18
2.5
Versioning and auditing
18
3
Use-Case View
19
3.1
Actors
19
3.2
Use Case Diagrams
20
3.2.1
Common Domain System Administrator (CDSA)
20
3.2.2
Common Domain User (CDU)
21
3.2.3
National Data Administrator (NDA)
22
3.2.4
National Data User (NDU)
24
3.2.5
Scheduled Data Replication Subscriber (SDRS)
24
3.2.6
CS/RD External systems users
26
3.3
Use Case Descriptions
26
4
Logical View
32
4.1
Presentation
34
4.2
Application
35
4.2.1
Application Package Hierarchy
35
4.2.2
Message Transformation Package
35
4.2.3
Message Validation Package
36
4.2.4
Data Import Package
37
4.2.5
Data Export Package
39
4.2.6
Functional Messages Package
41
4.2.7
Subscriptions Package
42
4.2.8
Request/Response Package
42
4.2.9
Entity Package
43
4.2.10
Work-Package Package
46
4.2.11
Publisher Package
46
4.3
Domain
48
4.4
Persistence
52
4.5
Services
53
5
Process View
56
5.1
Use-case realization
56
5.1.1
Sequence Diagram – Create New Simple Entity
56
5.1.2
Sequence Diagram – Extract Simple Entity
59
5.1.3
Sequence Diagram – Upload Message for Simple Entity
61
5.1.4
Sequence Diagram - Scheduled Data Replication
63
6
Deployment View
65
7
Implementation View
67
7.1
Application Protocols
67
7.2
System Technologies
67
7.2.1
Graphical User Interface
67
7.2.2
Application Logic
68
7.2.3
Persistence
68
7.3
Design Patterns
69
8
Error Handling
71
8.1
Error and Exception Handling
71



LIST OF FIGURES

14Figure 2‑1 - Technical architecture of CS/RD

Figure 2‑2 - Interactive mode -synchronous request/response
15
Figure 2‑3 - Asynchronous mode
16
Figure 2‑4 - Manual mode
17
Figure 3‑1 – Use Case View – Actors Hierarchy
19
Figure 3‑2 – Use Case View – Common Domain System Administrator (CDSA)
21
Figure 3‑3 – Use Case View – Common Domain User
22
Figure 3‑4 – Use Case View – National Data Administrator
23
Figure 3‑5 – Use Case View –National Data User
24
Figure 3‑6 – Use Case View -Subscribers
25
Figure 3‑7 – Use Case View – CS/RD External Systems Users
26
Figure 4‑1 – Logical View
33
Figure 4‑2 – Presentation
34
Figure 4‑3 – Application Hierarchy
35
Figure 4‑4 – Message Transformation package
36
Figure 4‑5 – Message Validation package
37
Figure 4‑6 – Data Import package
39
Figure 4‑7 – Data Export package
41
Figure 4‑8 – Functional Messages package
42
Figure 4‑9 – Subscriptions package
42
Figure 4‑10 – Request/Response package
43
Figure 4‑11 – Entity package
45
Figure 4‑12 – Work-Package package
46
Figure 4‑13 – Publisher package
47
Figure 4‑14 – Domain
48
Figure 4‑15 – Request Response package
49
Figure 4‑16 – Entity package
49
Figure 4‑17 – Users and Groups package
50
Figure 4‑18 – Work-Package package
50
Figure 4‑19 – IE Message package
50
Figure 4‑21 – DAO hierarchy
52
Figure 4‑22 –Services of the CS/RD application
55
Figure 5‑1 – Sequence Diagram: Create New Simple Entity
58
Figure 5‑2 – Sequence Diagram: Extract Simple Entity Reference Data
60
Figure 5‑3 – Sequence Diagram: Upload Message for Simple Entity (XML without transformation)
62
Figure 5‑4 – Sequence Diagram: Scheduled data replication job
64
Figure 6‑1 – Deployment View
65


LIST OF TABLES

12Table 1‑1: Abbreviations and Acronyms

Table 1‑2: Reference Documents
12
Table 1‑3: Applicable Documents
13
Table 3‑1: CS/RD application users
20
Table 3‑2: Use case descriptions
31
Table 4‑1: TATAF layers and Logical View layers
33
Table 4‑2: Presentation package description
34
Table 4‑3: Message Transformation package description
36
Table 4‑4: Message Validation package description
37
Table 4‑5: Data Import package description
38
Table 4‑6: Data Export package description
40
Table 4‑7: Functional Messages package description
41
Table 4‑8: Subscriptions package description
42
Table 4‑9: Request/Response package description
43
Table 4‑10: Entity package description
45
Table 4‑11: Work-Package package description
46
Table 4‑12: Publisher package description
47
Table 4‑13: Services description
55
Table 6‑1: Components and Nodes descriptions
66
Table 7‑1: Design Patterns Used
70
Table 8‑1: Exception Categories
72



1 Introduction
This document describes the Technical Architecture of the Central Services/Reference Data (CS/RD) application.
The CS/RD application contains Reference Data that are used by all countries. Furthermore, it offers the possibility for the users of the application to consult and maintain this Reference Data. The CS/RD application also provides distribution functionality, in order for any changes in the Reference Data maintained by it to be sent in form of messages to the countries to synchronize their data.
1.1 Objective of this document

The objective of this document is to provide a high-level technical architectural design description of the CS/RD application.
1.2 Structure of this document

The structure of this architecture of CS/RD document is based on the following views of the system:
The 4+1 views are:
· Use-case view. The use-case view illustrates the use cases and scenarios that encompass architecturally significant behaviour, classes, or technical risks. The analysis, design, and implementation activities subsequent to requirements are in the centre of the notion of the architecture. The validation of that architecture against the use-cases verifies that the architecture is a working architecture where the implementation of the application can be based;

· Logical View which is the static view of the system. There is only one logical view of the system, which illustrates subsystems, packages and classes that encompass architecturally significant behaviour, as well as explaining the roles and responsibilities of each subsystem, package and class. This view gives an idea of what a given system is made up of;
· Process View which is the dynamic view of the. It provides a basis for understanding the process organization of the system;
· Deployment View which is used to provide a basis for understanding the physical distribution of the system across a set of processing nodes. This section describes one or more physical network (hardware) configurations on which the software is deployed and run. It is a view of the Deployment Model. At a minimum for each configuration it indicates the physical nodes (computers, CPUs) that execute the software, and their interconnections (e.g. bus, LAN, point-to-point) It also includes a mapping of the processes of the Process View onto the physical nodes;
· Implementation View. The purpose of the implementation view is to capture the architectural decisions made for the implementation. In this view the frameworks, the technologies (protocols, etc) and the design patterns that are chosen to be used for the implementation of the CS/RD application will be listed. For each one, the reason and the purpose why they were selected are also explained.
The structure of this document per chapter is described below:
· Chapter 1 provides a brief introduction on the document’s purpose and structure;
· Chapter 2 describes the high-level technical architecture of CS/RD application; 
· Chapter 3 describes the use-case view of the system. This is the +1 view of the 4+1 UML views and in the standard terminology some times it is called scenarios view;
· Chapter 4 describes the logical view of the system;
· Chapter 5 describes the process view of the system;
· Chapter 6 describes the deployment view of the system;
· Chapter 7 describes the implementation view of the system;
· Chapter 8 discusses about error handling.
Performance issues that could have been a part of this document are not discussed here as they are a part of the CS/RD SPM&REQ document [R06].

1.3 Intended audience

The intended audience for this document is:

· Members of the CS/RD Development Team;

· The Taxation and Customs Union DG staff involved in the CS/RD project.
1.4 Abbreviations and acronyms
	Acronym
	Description

	AJAX
	Asynchronous Javascript And XML

	API
	Application Programming Interface

	CCN
	Common Communications Network

	COL
	Customs Office List

	CDSA
	Common Domain System Administrator

	CDU
	Common Domain User

	CPU
	Central Processing Unit

	CS/RD
	Central System / Reference Data

	CSI
	Common Systems Interface

	CSS
	Cascading Style Sheets

	DAO
	Data Access Object

	DDS
	Data Dissemination System

	DG TAXUD
	Taxation and Customs Union Directorate General

	EB
	Extraction Based

	EJB
	Enterprise Java Beans

	EOL
	Excise Office List

	EOS
	Economic Operators’ Systems

	FS
	Functional Specifications

	GUI
	Graphical User Interface

	HTTPS
	Hyper Text Transport Protocol Secure

	IE
	Information Exchange

	JAXB
	Java Architecture for XML Binding

	JDK
	Java Development Kit

	JEE
	Java Enterprise Edition

	JMS
	Java Message Service

	JPA
	Java Persistence API

	JSF
	Java Server Faces

	JSP
	Java Server Pages

	LAN
	Local Area Network

	NDA
	National Domain Administrator

	NDU
	National Domain User

	PL/SQL
	Procedural Language/Structured Query Language

	RB
	Retrieval Based

	SDRS
	Scheduled Data Replication Subscribers

	SEED
	System for Exchange of Excise Data

	SMTP
	Simple Message Transfer Protocol

	SSL
	Secure Socket Layer

	TARIC
	Tarif Intégré de la Communauté (Integrated Tariff of the European Community)

	TATAF
	Tariff Applications Technical Architecture Framework

	TLS
	Transport Layer Security

	UML
	Unified Modelling Language

	TU
	Timetable Update

	UM
	User Management

	XML
	Extensible Markup Language


Table 1‑1: Abbreviations and Acronyms
1.5 Reference documents
	Ref.
	Identifier
	Title
	Version

	[R01] 
	OMG Document Number:  formal/2007-11-04
	OMG Unified Modeling Language (OMG UML), Infrastructure
	2.1.2

	[R02] 
	OMG Document Number:  formal/2007-11-02
	OMG Unified Modeling Language (OMG UML), Superstructure
	2.1.2

	[R03] 
	Core J2EE Patterns
	http://java.sun.com/blueprints/corej2eepatterns/Patterns/
	N/A

	[R04] 
	IEEE Software 12 (6), pp. 42-50
	Architectural Blueprints — The “4+1” View Model of Software Architecture.
	N/A


Table 1‑2: Reference Documents
1.6 Applicable documents

	Ref.
	Identifier
	Title
	Version

	[R05] 
	CS/RD-FS 
	CSRD-Functional Specifications 
	1.00

	[R06] 
	CS/RD2_SPM&REQ
	CS/RD2 SYSTEM PROCESS MODEL AND REQUIREMENTS
	1.00

	[R07] 
	TATAF
	Tariff Application Technical Architecture Framework
	7.00


Table 1‑3: Applicable Documents
2 High-level technical architecture

This chapter describes the high-level technical architecture of the CS/RD application. The aim is to provide the reader with a global view of the system, to clarify the infrastructure put in place, and to categorise the users of the system. As CS/RD application is based on the TATAF framework, the high level technical architecture of the TATAF applications, as it is described in the TATAF technical architecture document, fully applies to the CS/RD application. In this chapter we describe some more specific high-level architectural characteristics (e.g. communication models of the application) that apply to the CS/RD application. 
2.1 Overview of the system

Figure 2‑1 depicts the technical architecture of the CS/RD application. This overview voluntarily stays at a high level. More detailed information will be provided in the following chapters.


[image: image1.emf]Commission user

National Administration User

(HTTP or CCN)

Commission Application

(JMS queues)

National Administration Application

(CCN queues)

Common 

Community 

Network

Internal 

Commission 

Network

https -internet

ccn -http

CSI 

Bridge 

Layer

Input CCN 

queue

Output CCN 

queue

HTTP 

Bridge 

Layer

http or ccn

HTTP requests

J

M

S

 

m

e

s

s

a

g

e

s

H

T

T

P

 

r

e

q

u

e

s

t

s  

f

o

r

w

a

r

d

i

n

g

C

C

N

 

/  

J

M

S

 

q

u

e

u

e

 

m

a

p

p

i

n

g

Output JMS 

queue

Input JMS 

queue

PORTAL

-Web Applications

-Java Clients

-Web Services

Asynchronous

Logic

Asynchronous

Layer

Reference

Data

Beans

Business

Logic

Beans

Management

Beans

Business

Layer

Presentation

Logic

Synchronous

Presentation

Layer

Utility Layer

Utility

Beans

Oracle 

RDBMS

Application

Database

WLS

Security

Services

WLS

Transaction

and JDBC

Services


Figure 2‑1 - Technical architecture of CS/RD

In Figure 2‑1 the TATAF layers used in CS/RD can also be seen. Synoptically, the TATAF layers that will also be used by CS/RD are:

· Synchronous Presentation layer;

· Asynchronous layer;

· Business layer;

· Utility layer;

· Persistence layer.
2.2 Architecturally important use-cases

There is no document in the CS/RD design that describes the use-cases. So, in this document the basic and most risky use-cases, that actually play a role in the design of the system, are going to be described. These use-cases will prove that the design is a valid one if and only if the design can handle all of them. If a use-case cannot be supported by the design this would mean that the design must be iterated again in order to support it.
2.3 Communication Modes
CS/RD application needs to implement the following synchronous and asynchronous logics in order to be functional. In an asynchronous message the sender doesn’t wait for the result of the message, instead it processes the result when and if it ever comes back, and in the other hand in synchronous messages the sender waits for the result before continuing on.
· Interactive mode 
This mode provides a web-based graphical user interface for the interactive manipulation of the Reference Data and Customs Offices.

A diagram showing an example of the way the synchronous request/response communication is achieved is shown in the diagram below (Figure 2‑2):


[image: image2.emf]HttpRequest

: GUI : Web Server : Business Logic

InternalSystemRequest

Response

HttpResponse


Figure 2‑2 - Interactive mode -synchronous request/response 
The user sends a request to the system synchronously, using the GUI, and then the system processes the request and responds synchronously.
· Asynchronous mode
A diagram showing an example of the way the asynchronous request/response communication is achieved is shown in the diagram below (Figure 2‑3):


[image: image3.emf]SDR Subscriber

:CSIQueue

:JMSQueue

: Business Logic

Response

ProcessingRequest

InternalAsynchRequest

MessageReceive

MessageDeliver

MessageSend

MessageGet


Figure 2‑3 - Asynchronous mode
The subscriber sends a message to the application and then the system processes the request and responds asynchronously. The message is received by CSI queue and after consumed received by JMS queue. Consumed asynchronously from JMS it is passed to and processed by Business Logic. The Response is created and sent to JMS queue and after that to CSI queue asynchrounusly. Finally the message is delivered to Subscribers. Asynchronous mode allows the CS/RD system to receive IE030, IE914 and IE916 messages and to send IE031, IE931, IE933, IE913, IE032 and IE932 using a queue based protocol over CCN/CSI. 
Manual mode
A diagram showing an example of the way the asynchronous request/response and download communication is achieved (Figure 2‑4):

[image: image4.emf]: GUI : Web Server : Business Logic

DownloadRequest1

DownloadResponse1

DownloadRequest2

DownloadResponse2

ProcessingRequest1

InternalAsynchRequest

HttpResponse

PublishMessage

HttpRequest


Figure 2‑4 - Manual mode
The user sends a request to the system using the GUI, and then the system processes the request and responds asynchronously. After the response(s) have been returned and the message is created and published, the user can download the files that are returned by the application. She/he can download it several times until the link expires.
This mode allows easy manual upload of pre-prepared messages (IE030/IE032) as well as downloads of specified messages (IE931/IE932/IE933).
2.4 Security

The authentication and authorization security requirements are implemented by the CCN Network. The CS/RD application’s user management module is used to communicate with the standard TATAF User Management module where the implementation of the authentication and authorization processes through the CCN Network is implemented.
In case of direct access through the Internet encryption of transferred data (through the SSL protocol) is implemented by the HTTPS server
.

2.5 Versioning and auditing

In CS/RD, like in most TATAF applications, there are requirements with respect to the management of older versions of information.
In addition, a user (or a set of users) shall be able to prepare their work (create, edit, delete all or part of their actions) over a long period of time. This work is to be visible only by the user who is the owner of these actions until he/she decides to make these actions visible for every other user granted to see it by publishing them.

In order to accomplish this requirement CS/RD implements the TATAF work-package notion, where the users’ actions are grouped into packages, named work-packages, which are initially in a draft version and visible only to the owner of the work-package, and when published it is passed to the history, is visible by everyone and cannot be undone. The work-package mechanism implemented by CS/RD is described in more detail in the TATAF architectural document.
3 Use-Case View
3.1 Actors
Figure 3‑1 shows the possible CS/RD users categorized into two main groups, one for the Human users and one for the external systems that communicate with CS/RD (either that give input or take output to/from the CS/RD application):

[image: image5.emf]User

Common Domain

System Administrator

(CDSA)

Common Domain 

User

(CDU)

National Domain 

Administrator

(NDA)

National Domain

User

(NDU)

Scheduled Data

Replication Subscriber

(SDRS)

External system

TARIC SEED  EOS DDS 


Figure 3‑1 – Use Case View – Actors Hierarchy

The Actors identified during the architectural analysis are described in the following two tables (Table 3‑1 and Table 3‑2):
	User Type
	Name
	Description

	External System Users
	TARIC
	The TARIC user of the CS/RD application. This user periodically sends messages to the CS/RD application in order for CS/RD to update its data. This user gives input to the CS/RD application.

	
	SEED 
	SEED, EOS and DDS users of the CS/RD application are users that receive messages from CS/RD in order to synchronize the data maintained in their systems with the data that are maintained in CS/RD. These users take output from the CS/RD application.

	
	EOS
	

	
	DDS 
	

	User
	Common Domain System Administrator (CDSA)
	Responsible for managing the user profiles, for maintaining the system 

	
	Common Domain User (CDU)
	Responsible for Common RD code list values or code list values' applicability values actualisation.

	
	National Data Administrator (NDA)
	Responsible for modifying only their country’s COL, EOS Sharing Authorities and their own national reference data.

	
	National Data User (NDU)
	Allowed to extract or retrieve the other countries’ COL and the Common RD without any write access

	
	Scheduled Data Replication Subscriber (SDRS)
	Subscribed in order to receive the COL (or EOL) and the Common RD.


Table 3‑1: CS/RD application users

3.2 Use Case Diagrams

In the following figures, the use case diagrams per CS/RD actor are presented.
3.2.1 Common Domain System Administrator (CDSA)
The CS/RD Administrator has one use case, which is the administration use case.

In this use case we can distinguish five different scenarios, which are:

· Manage users
;

· Manage subscriptions;

· Set member states per domain;

· Edit TU Process;

· Clean up COL data.

Of course, the CS/RD administrator can also do everything the other users can do, but he/she is not doing these as a CS/RD administrator, so these use cases are described below.

[image: image6.emf]Administration

Common Domain 

System Administrator

(CDSA)

 
Figure 3‑2 – Use Case View – Common Domain System Administrator (CDSA)
3.2.2 Common Domain User (CDU)
The Common Domain User has the use cases that can be seen in Figure 3‑3.

Some of these use cases include multiple scenarios as described below:

Maintain Reference Data:

· Create reference data;

· Edit reference data;

· Delete reference data.

Import Reference Data:

· Import message with upload;

· Import message via CCN.

Maintain COL Data:

· Create reference data;

· Edit reference data;

· Delete reference data.

Import COL Data:

· Import message with upload. 
View History
Update Broadcast

Every time the COL or Common RD is modified, immediate updates via IE031 or IE032 messages are produced and broadcasted by the CS/RD application.

Scheduled data replication

Periodic updates via IE931, IE932 or IE933 messages, which are produced and broadcasted at a configurable frequency to subscribed users.

[image: image7.emf]Manage COL

Import Reference Data

View History

Common Domain User (CDU)

Import COL

Manage Reference Data

Update Broadcast

«extends»

«extends»

«extends»

«extends»


Figure 3‑3 – Use Case View – Common Domain User
3.2.3 National Data Administrator (NDA)
National Data Administrator can modify their country’s COL, EOS Sharing Authorities and their own national reference data. Some of these use cases include multiple scenarios as described below:

Export Reference Data:

· Extract reference data;

· Retrieve reference data.

Query Reference Data:

· Browse reference data;

· Search reference data.

Maintain their own country’s Reference Data through GUI and message upload:

· Create reference data;

· Edit reference data;

· Delete reference data.

Maintain their own country’s COL:

· Create COL data;

· Edit COL data;

· Delete COL data.

Maintain their own country’s Sharing Authorities EOS:

· Create EOS data;

· Edit EOS data;

· Delete EOS data.
Validate IE030 generated by TU
Publish changes

Update Broadcast

Every time the COL or Common RD is modified, immediate updates via IE031 or IE032 messages are produced and broadcasted by the CS/RD application.

Scheduled data replication

Periodic updates via IE931, IE932 or IE933 messages, which are produced and broadcasted at a configurable frequency to subscribed users.

[image: image8.emf]National Data Administrator (NDA)

Export Reference Data

Query Reference Data

Manage EOS Manage COL

Validate IE030

Publish changes

Update Broadcast

«extends»

«extends»

Scheduled data replication

«uses»


Figure 3‑4 – Use Case View – National Data Administrator
3.2.4 National Data User (NDU)
National Data User can extract COL and Reference data:
Export Reference Data:

· Extract COL and Reference data;

· Retrieve COL and Reference data.

Query Reference Data:

· Browse COL and Reference data;

· Search COL and Reference data.


[image: image9.emf]Export RD and COL

Query RD and COL

National Data User (NDU)


Figure 3‑5 – Use Case View –National Data User
3.2.5 Scheduled Data Replication Subscriber (SDRS) 

Scheduled Data Replication Subscribers can receive COL and Reference data:
Receive Reference Data
Receive COL
Scheduled data replication

Periodic updates via IE931, IE932 or IE933 messages, which are produced and broadcasted at a configurable frequency to subscribed users.

[image: image10.emf]Receive COL 

Receive Reference Data

Scheduled Data Replication Subscriber (SDRS) 

Scheduled data replication

«uses»

«uses»


Figure 3‑6 – Use Case View -Subscribers

3.2.6 CS/RD External systems users

The two use cases here are actually already mentioned in the above use cases. They are the Import Reference Data use case and the Export Reference Data use case.

CS/RD Application is importing TARIC data and needs to transform it.
Thus they are not analysed any further for these specific users but they are just mentioned.


[image: image11.emf]DDS SEED EOS TARIC

Import Reference Data

Export Reference Data


Figure 3‑7 – Use Case View – CS/RD External Systems Users

3.3 Use Case Descriptions

A table with five of the most architecturally important use cases, as they are indicative of the business logic of the application, and a short description for each of them, including normal flow, alternative flow and exception flow, can be found below (Table 3‑2):

	Use Case
	Description

	Create Reference Data (Figure 3‑3)
	Actors

· A user who wants to create a new reference data item.

Pre-conditions

· The user must be authenticated and have the required rights.
Normal Flow

· The user fills the forms with the data he/she wants and sends his request to the system;
· The system validates that the forms the user submitted are in line with the rules of the application and returns the correct message to the user;
· The data are stored in the database and a success message is returned to the user;
· Immediate updates via IE031 or IE032 messages are produced;

· IE031 or IE032 messages are produced and broadcasted by the CS/RD system.
Alternative Flow(s)
· N/A.
Exception Flow(s)
· The information provided to the system is not in line with the rules so the system returns an error message to the user in order to correct them;

· The data fail to be stored in the database. The system logs an error message and returns an error message to the user.
Post-conditions

· The system has just stored successfully the inserted data to the database;

· The system has informed the user about this.


	Export (extract) Reference Data (Figure 3‑4)
	Actors

· A user who wants to get an extraction for some reference data.
Pre-conditions

· The user must be authenticated and have the required rights.
Normal Flow

· The user fills the forms with the data he/she wants and sends his/her request to the system;
· The system validates that the forms the user submitted are in line with the rules of the application and returns the correct message to the user;

· The data are restored from the database and a message is constructed including these data;

· The system will publish the constructed file (make it available for download through the web interface) and send an e-mail to the user (if the user has requested a notification) to notify him/her that his/her message has been constructed and is ready for download.
Alternative Flow(s)

· The user requested his/her extract in EDIFACT so the produced XML message must first be transformed.
Exception Flow(s)
· The forms the user submitted are not in line with the rules so the system returns an error message to the user in order to correct them;
· The data fail to be retrieved from the database. The system logs an error message and returns an error message to the user.
Post-conditions

· The system has just stored successfully the message;

· The system has notified the user about this if he/she have chosen it;

· The system has created a link to download the message;
· After a predetermined period set by the CS/RD administrator, this message will be automatically deleted. 


	Import (upload) Reference Data (Figure 3‑3)
	Actors

· A user who wants to update some reference data using a message.
Pre-conditions

· The user must be authenticated and have the required rights.
Normal Flow

· The user selects the message file that has to be uploaded and sends his/her upload request to the system;

· The system validates that the message that the user uploaded is in line with the rules of the application and returns the correct message to the user;

· The data are stored in the database and a success message (IE913) is returned to the user;
· Immediate updates via IE031 or IE032 messages are produced;

· IE031 or IE032 messages are produced and broadcasted by the CS/RD system.
Alternative Flow(s)

· The message that the user submitted is in EDIFACT format so it has to be transformed in XML format before it is parsed.
Exception Flow(s)
· The message is in EDIFACT and cannot be converted to XML, as it is not well formatted. The system logs an error message and returns an error message to the user, as well as to the administrator;
· The forms the user submitted are not in line with the rules so the system returns an error message to the user in order to correct them;
· The XML message that is uploaded is not in line with the application rules so it fails to be inserted to the database. An exception is logged to the system and a failure message (IE913) is returned to the user.
Post-conditions

· The system has stored the changes described in the message to the database;

· The system has just stored successfully the return message (IE913);

· The system has created a link to download the return message;
· After a predetermined period set by the CS/RD administrator, this message will be automatically deleted from the system (rule ADM-FN-RET of Functional Specifications [R05]);
· The system starts the procedure to disseminate the updated data to the system subscribers (member states, etc.).


	Publish 
	Actors

· A user who wants to make his/her changes visible to everyone (publish).
Pre-conditions

· The user must be authenticated and have the required rights.
Normal Flow

· The user logs from the interactive interface (from his/her web browser), and select to publish his/her draft work package, and sends his request to the system;
· The initial validation of the draft work-package has already been done at creation time. An additional validation needs to be done at publication time because conditions might have changed in the period between creation and publication. For example, the validity date of the work-package might have expired at publication time;
· The work-package is turned into state of published which means that it cannot be changed by anyone anymore;
· A message containing these data is created by the system and sent to the subscribers (e.g. member states), to inform them about the actions of the published work-package.
Alternative Flow(s)

· N/A.
Exception Flow(s)
· The actions contained in the context of the work-package to be published are not in line with the application rules. The work-package is not published and an error is returned to the user informing him/her which action is not in line with the application rules so he/she can change/cancel it and the publish the work-package;

· The message that is to be created to send to the subscribers cannot be created, so the system throws an exception, logs it and reports the error to the administrator to take the appropriate actions.
Post-conditions

· The system creates a new work-package with state draft (not published) and assigns it to the user;

· The system has sent successfully the messages with the actions of the published work-package to the system subscribers.


	Scheduled data replication
	Actors

· Scheduled Data Replication Subscriber, National Data Administrator.
Pre-conditions

· Frequency configured;

· Updates of the data performed and the scheduled period expired.
Normal Flow

· Periodic updates - IE931, IE932 or IE933 messages are created; 
· Messages are broadcasted;

· Messages sent via CCN in case of conforming CCN/CSI subscription.
Alternative Flow(s)

· e-mail notifications are sent to subscribers in case of SMTP subscription.
Exception Flow(s)
· Conformation of Delivery not received;

· Subscription suspended;

· Subscriber informed via email.
Post-conditions

· The application has sent successfully the messages with the actions to the system application subscribers.


	
	


Table 3‑2: Use case descriptions

4 Logical View
The following figure illustrates the logical structure of CS/RD, as the application can be decomposed into five (5) main sections. Each section applies to a layer and each of the five (5) main sections is described in more detail in this chapter.
· The presentation layer is responsible for handling synchronous and asynchronous interactions with the outer world (end user or external systems connected to CS/RD);
· The application layer composes the business logic of the application;
· The domain layer shows the classes that compose the domain model of the system from a static point of view. The domain model can be described as a logical data model of the system which describes the various entities involved in that system and their relationships. Thus, all the classes that belong in this package should have the stereotype «entity» as they are the classes that compose the domain model;
· The persistence layer shows the classes that implement the application’s mechanism that handle all the persistent data of the application;
· The services layer shows the technical services that are offered and used in the application. These services are used by the classes and interfaces of the other layers, thus the services layer can be also seen as vertical layer.
Model-View-Controller design pattern is implemented to provide multilayered architecture of the application
The exceptions that can be raised by the methods that are described in this chapter are not included, as it is considered in the scope of the detailed design of the application, which is not part of this document.
Also, please note that not all the signatures of the methods are complete. Some methods may be shown without parameters at all, but may actually have some parameters when the implementation is done. Also, some other methods which have some parameters may have some additional parameters. The purpose in this document is to show only the parameters that play a significant role in the architecture (e.g. that show how two interfaces communicate or to show the responsibilities of an interface).

In Figure 4‑1 the way these packages communicate is shown:


[image: image12.emf]Logical 

View::Prese

ntation

Logical 

View::Applic

ation

Logical 

View::Doma

in

Logical 

View::Persis

tence

Logical 

View::Servic

es


Figure 4‑1 – Logical View

Mapping between the TATAF layers and CSRD logical layers is shown in Table 4‑1.
Presentation layer of CSRD conforms to Synchronous Presentation and Asynchronous TATAF layers – both of them are used. CSRD business layer is split in two detailed tiers – Application and Domain. Helper layer of a set of services and utilities is provided.
	TATAF layer
	Logical View layers

	Synchronous Presentation
	Presentation

	Asynchronous
	Presentation

	Business
	Application – Domain

	Utility
	Services

	Persistence
	Persistence


Table 4‑1: TATAF layers and Logical View layers
4.1 Presentation
The presentation layer consists of three sub packages: GUI, Mail and CCN. These packages contain all the classes that communicate with external components/systems of the application and are described below:
	Name
	Type
	Class/Interface (for methods and attributes)
	Description

	HttpBridge
	Interface
	 
	An interface that is responsible for forwarding Http requests and Http responses to and from GUI and external systems.

	Mailer
	Interface
	
	An interface that is responsible for sending mails to external systems.

	CsiBridge
	Interface
	
	An interface that is responsible for the communication of the application with the CCN/CSI network.

	receiveHttpRequest(httpRequest : HttpRequest)
	Method
	HttpBridge
	This method receives an Http Request.

	receiveHttpResponse(httpResponse : HttpResponse)
	Method
	HttpBridge
	This method receives and forwards an Http Response to the end user.

	sendMail()
	Method
	Mailer
	This method sends an email.

	putMessageInQueue(in message: IeMessage)
	Method
	CsiBridge
	This method puts a Message to a CCN/CSI queue.

	getMessageFromQueue(): IeMessage
	Method
	CsiBridge
	This method gets a Message to a CCN/CSI queue.

	browseQueue()
	Method
	CsiBridge
	This method checks if any message exists to a CCN/CSI queue.

	clearQueue()
	Method
	CsiBridge
	This method clears a CCN/CSI queue from any messages that exist there.


Table 4‑2: Presentation package description
In Figure 4‑2, more information can be found:

[image: image13.emf]+sendMail()

«interface»

Mailer

+putMessageInQueue(in message : IeMessage)

+getMessageFromQueue() : IeMessage

+browseQueue()

+clearQueue()

«interface»

CsiBridge

+receiveHttpRequest(httpRequest : 

HTTPRequest)

+receiveHttpResponse(httpResponse :

HTTPResponse)

«interface»

HttpBridge


Figure 4‑2 – Presentation

4.2 Application
4.2.1 Application Package Hierarchy
The application layer contains the classes, which constitute the CSRD functionality. In Figure 4‑3, the decomposition of the application package into other packages is shown while in the rest of the paragraph the classes of each package are listed and described.

[image: image14.emf]Entity

BusinessM

essage

Subscription Workpackage Publisher

Message 

Validation

Data Import Data Export

Message 

Transforma

tion

Mail CCN

Functional 

Messages

RequestRespon

seProcessor


Figure 4‑3 – Application Hierarchy
Some packages consist of other packages. As demonstrated in the previous figure, the package BusinessMessage contains the packages MessageTransformation, MessageValidation, DataImport, DataExport and FunctionalMessages.
However, most of the packages are class/interface containers. For example, the package MessageTransformation contains the classes responsible for the message transformations as displayed in Figure 4‑4.
4.2.2 Message Transformation Package
The message transformation package contains:
	Name
	Type
	Class/Interface (for methods and attributes)
	Description

	MessageTransformationFactory
	Class
	
	A factory class responsible to create the correct type of MessageTransformation class.

	XmlMessageTransformation
	Interface
	
	An interface that is responsible for converting an XML message to an EDIFACT message.

	EdifactMessageTransformation
	Interface
	
	An interface that is responsible for converting an EDIFACT message to an XML message.

	MessageTransformation
	Interface
	
	The interface that message transformation classes must implement.

	getMessageTransformation(in messageFormat) : MessageTransformation
	Method
	MessageTransformationFactory
	A method that, depending the parameter passed to it (messageFormat), creates a class that implements the XmlMessageTransformation interface or the EdifactMessageTransformation interface. The return type of this method is a MessageTransformation object.

	transformMessage(in xmlMessage : XmlMessage) : EdifactMessage
	Method
	XmlMessageTransformation
	This method takes as an input an XmlMessage object and transforms it to an EdifactMessage object which returns.

	transformMessage(in edifactMessage : EdifactMessage) : XmlMessage
	Method
	EdifactMessageTransformation
	This method takes as an input an EdifactMessage object and transforms it to an XmlMessage object which returns.

	transformMessage(in message : IeMessage) : IeMessage
	Method
	MessageTransformation
	This method takes as an input an IeMessage object and returns an IeMessage object, which is the transformation of the first IeMessage object.


 Table 4‑3: Message Transformation package description


[image: image15.emf]+transformMessage(in message : IeMessage) : IeMessage

«interface»

MessageTransformation

+transformMessage(in xmlMessage : XmlMessage) : EdifactMessage

«interface»

XmlMessageTransformation

+transformMessage(in edifactMessage : EdifactMessage) : XmlMessage

«interface»

EdifactMessageTransformation

c

r

e

a

t

e

s c

r

e

a

t

e

s

+getMessageTransformation(in messageFormat) : MessageTransformation

MessageTransformationFactory


Figure 4‑4 – Message Transformation package
4.2.3 Message Validation Package

The message validation package contains:

	Name
	Type
	Class/Interface (for methods and attributes)
	Description

	SchemaValidation
	Interface
	
	An interface that is responsible for the validation of an IeMessage object against the XML schema.

	validateMessage(in message : IeMessage) : Boolean
	Method
	SchemaValidation
	This method takes as input an IeMessage and returns a boolean. False if the input message is invalid and True if the input message is valid.


Table 4‑4: Message Validation package description


[image: image16.emf]+validateMessage(in message : IeMessage) : Boolean

«interface»

SchemaValidation


Figure 4‑5 – Message Validation package
4.2.4 Data Import Package

The data import package contains:

	Name
	Type
	Class/Interface (for methods and attributes)
	Description

	MessageForDataImportFactory
	Class
	
	A factory class responsible to create the correct type of MessageForDataImport class.

	SimpleEntityMessageDataImport
	Interface
	
	An interface that is responsible for the data import via messages for simple entities.

	CustomsOfficeMessageDataImport
	Interface
	
	An interface that is responsible for the data import via messages for customs offices.

	MessageForDataImport
	Interface
	
	The interface that message data import classes must implement.

	getMessageDataImport(in messageType) : MessageForDataImport
	Method
	MessageForDataImportFactory
	A method that, depending the parameter passed to it (messageType), creates a class that implements the SimpleEntityMessageDataImport interface or the CustomsOfficeMessageDataImport interface. The return type of this method is a MessageForDataImport object.

	receiveRequest(in request : Request)
	Method
	· SimpleEntityMessageDataImport;
· CustomsOfficeMessageDataImport;
· MessageForDataImport.
	This method takes as an input a Request object with everything included in the request (message to be imported, user that sends the request, message type, etc.). This method is responsible for receiving a data import request.

	sendResponse(in response : Response)
	Method
	· SimpleEntityMessageDataImport;
· CustomsOfficeMessageDataImport;
· MessageForDataImport.
	This method takes as an input a Response object with everything included in the response (answer message to the data import, user that have sent the request, message type, etc.).

	parseMessage(in message : IeMessage) : SimpleEntity
	Method
	SimpleEntityMessageDataImport
	This method takes as an input an IeMessage containing data for simple entities, parses the message and returns a SimpleEntity object.

	parseMessage(in message : IeMessage) : CustomsOfficeEntity
	Method
	CustomsOfficeMessageDataImport
	This method takes as an input an IeMessage containing data for customs office entity, parses the message and returns a CustomsOfficeEntity object.

	parseMessage(in message : IeMessage) : Entity
	Method
	MessageForDataImport
	This method takes as an input an IeMessage containing data for entities, parses the message and returns an Entity object.


Table 4‑5: Data Import package description


[image: image17.emf]+getMessageDataImport(in messageType) : MessageForDataImport

MessageForDataImportFactory

+receiveRequest(in request : Request)

+sendResponse(in response : Response)

+parseMessage(in message : IeMessage) : Entity

«interface»

MessageForDataImport

c

r

e

a

t

e

s

c

r

e

a

t

e

s

+receiveRequest(in request : Request)

+sendResponse(in response : Response)

+parseMessage(in message : IeMessage) : SimpleEntity

«interface»

SimpleEntityMessageDataImport

+receiveRequest(in request : Request)

+sendResponse(in response : Response)

+parseMessage(in message : IeMessage) : CustomsOfficeEntity

«interface»

CustomsOfficeMessageDataImport


Figure 4‑6 – Data Import package
4.2.5 Data Export Package

The data export package contains:

	Name
	Type
	Class/Interface (for methods and attributes)
	Description

	AbstractMessageForDataExportFactory
	Class
	
	An abstract factory class responsible for creating the data export classes.

	SimpleEntityMessageForDataExportFactory
	Class
	
	A factory class responsible to create the correct type of MessageForDataExport class for Simple Entities.

	CustomsOfficeMessageForDataExportFactory
	Class
	
	A factory class responsible to create the correct type of MessageForDataExport class for Customs Offices.

	SimpleEntityExtract
	Interface
	
	An interface that is responsible for the data extract for simple entities.

	CustomsOfficeExtract
	Interface
	
	An interface that is responsible for the data extract for customs offices.

	SimpleEntityRetrieve
	Interface
	
	An interface that is responsible for the data retrieve for simple entities.

	CustomsOfficeRetrieve
	Interface
	
	An interface that is responsible for the data retrieve for customs offices.

	MessageForDataExport
	Interface
	
	The interface that message data export classes must implement.

	getMessageDataExport(in messageType) : MessageForDataExport
	Method
	· AbstractMessageForDataExportFactory;

· SimpleEntityMessageForDataExportFactory;

· CustomsOfficeMessageForDataExportFactory.
	A method that, depending the parameter passed to it (messageType), creates a class that implements the SimpleEntityExtract interface or the SimpleEntityRetrieve interface or the CustomsOfficeExtract interface or the CustomsOfficeRetrieve interface. The return type of this method is a MessageForDataExport object.

	receiveRequest(in request : Request)
	Method
	· SimpleEntityExtract;

· CustomsOfficeExtract;

· SimpleEntityRetrieve;

· CustomsOfficeRetrieve;

· MessageForDataExport.
	This method takes as an input a Request object with everything included in the request (data to be exported, user that sends the request, message type, etc.).

	sendResponse(in response : Response)
	Method
	· SimpleEntityExtract;

· CustomsOfficeExtract;

· SimpleEntityRetrieve;

· CustomsOfficeRetrieve;

· MessageForDataExport.
	This method takes as an input a Response object with everything included in the response (exported message, user that have sent the request, message type, etc.).

	doExtract() : SimpleEntity
	Method
	SimpleEntityExtract
	This method does the real extract of data from the database and returns the SimpleEntity object(s).

	doExtract() : CustomsOfficeEntity
	Method
	CustomsOfficeExtract
	This method does the real extract of data from the database and returns the CustomsOfficeEntity object(s).

	doRetrieve() : SimpleEntity
	Method
	SimpleEntityRetrieve
	This method does the real retrieve of data from the database and returns the SimpleEntity object(s).

	doRetrieve() : CustomsOfficeEntity
	Method
	CustomsOfficeRetrieve
	This method does the real retrieve of data from the database and returns the CustomsOfficeEntity object(s).

	createMessage(in simpleEntity : SimpleEntity) : IeMessage
	Method
	· SimpleEntityExtract;

· SimpleEntityRetrieve.
	This method takes as input the output from the doExtract() or doRetrieve() methods, which is a SimpleEntity object and creates the IeMessage which is what it returns.

	createMessage(in customsOfficeEntity : CustomsOfficeEntity) : IeMessage
	Method
	· CustomsOfficeExtract;

· CustomsOfficeRetrieve.
	This method takes as input the output from the doExtract() or doRetrieve() methods, which is a CustomsOfficeEntity object and creates the IeMessage which is what it returns.

	createMessage(in entity : Entity) : IeMessage
	Method
	MessageForDataExport
	This method takes as an input an Entity object, and creates an IeMessage object which is what it returns.


Table 4‑6: Data Export package description


[image: image18.emf]+getMessageDataExport(in messageType) : MessageForDataExport

AbstractMessageForDataExportFactory

+receiveRequest(in request : Request)

+sendResponse(in response : Response)

+createMessage(in entity : Entity) : IeMessage

«interface»

MessageForDataExport

c

r

e

a

t

e

s

c

r

e

a

t

e

s

+receiveRequest(in request : Request)

+sendResponse(in response : Response)

+doRetrieve() : SimpleEntity

+createMessage(in simpleEntity : SimpleEntity) : IeMessage

«interface»

SimpleEntityRetrieve

+receiveRequest(in request : Request)

+sendResponse(in response : Response)

+doExtract() : CustomsOfficeEntity

+createMessage(in customsOfficeEntity : CustomsOfficeEntity) : IeMessage

«interface»

CustomsOfficeExtract

+getMessageDataExport(in messageType) : MessageForDataExport

SimpleEntityMessageForDataExportFactory

+getMessageDataExport(in messageType) : MessageForDataExport

CustomsOfficeMessageForDataExportFactory

+receiveRequest(in request : Request)

+sendResponse(in response : Response)

+doExtract() : SimpleEntity

+createMessage(in simpleEntity : SimpleEntity) : IeMessage

«interface»

SimpleEntityExtract

c

r

e

a

t

e

s

+receiveRequest(in request : Request)

+sendResponse(in response : Response)

+doRetrieve() : CustomsOfficeEntity

+createMessage(in customsOfficeEntity : CustomsOfficeEntity) : IeMessage

«interface»

CustomsOfficeRetrieve

c

r

e

a

t

e

s


Figure 4‑7 – Data Export package
4.2.6 Functional Messages Package

 The functional messages package contains:

	Name
	Type
	Class/Interface (for methods and attributes)
	Description

	FunctionalMessage
	Interface
	
	An interface that is responsible for any functional messages of the application.

Functional messages are considered to be any messages that do not contain Reference Data.

	createMessage(in messageType : String) : IeMessage
	Method
	FunctionalMessage
	This method creates the functional IeMessage with the given message type.

	receiveRequest(in request : Request)
	Method
	FunctionalMessage
	This method takes as an input a Request object with everything included in the request (data of the message, user that sends the request, message type, etc.).

	sendResponse(in response : Response)
	Method
	FunctionalMessage
	This method takes as an input a Response object with everything included in the response (data of the message, user that have sent the request, message type, etc.).


Table 4‑7: Functional Messages package description


[image: image19.emf]+createMessage(in messageType) : IeMessage

+receiveRequest(in request : Request)

+sendResponse(in response : Response)

«interface»

FunctionalMessage


Figure 4‑8 – Functional Messages package
4.2.7 Subscriptions Package

The subscriptions package contains:
	Name
	Type
	Class/Interface (for methods and attributes)
	Description

	Subscription
	Interface
	Subscription
	An interface that is responsible for the handling of the subscriptions of the application.

	createSubscription(in subscription : Subscription)
	Method
	Subscription
	This method creates a subscription. It takes a Subscription entity as an input.

	deleteSubscription(in subscription : Subscription)
	Method
	Subscription
	This method deletes a subscription. It takes a Subscription entity as an input.

	updateSubscription(in subscription : Subscription)
	Method
	Subscription
	This method updates a subscription. It takes a Subscription entity as an input.

	findDestinations(in request : Request):Object[0..*]
	Method
	Subscription
	This method is used to find the destinations of the subscription that are to be triggered according to what is the request. So, if the request is to retrieve e.g. all SMTP subscriptions this method will return the destinations of all the SMTP subscriptions, etc.
The input parameter of this method is a Request object.


Table 4‑8: Subscriptions package description


[image: image20.emf]+createSubscription(in subscription : Subscription)

+deleteSubscription(in subscription : Subscription)

+updateSubscription(in subscription : Subscription)

+findDestinations(in request : Request):Object[]

«interface»

Subscription


Figure 4‑9 – Subscriptions package
4.2.8 Request/Response Package

The request/response package contains:
	Name
	Type
	Class/Interface (for methods and attributes)
	Description

	RequestResponse
	Interface
	
	An interface that is responsible for the handling of the requests and the responses that circulate across the application.

	createRequest(requestType : String) : Request
	Method
	RequestResponse
	This method creates and returns a request object with a given request type.

	createResponse() : Response
	Method
	RequestResponse
	This method creates and returns a response object.

	SendInternalRequest(in request : Request)
	Method
	RequestResponse
	This method sends an internal Request. It takes a Request object as an input.


Table 4‑9: Request/Response package description


[image: image21.emf]+createRequest(in requestType : String) : Request

+createResponse() : Response

+sendInternalRequest(in request : Request)

«interface»

RequestResponse


Figure 4‑10 – Request/Response package
4.2.9 Entity Package

The entity package contains:

	Name
	Type
	Class/Interface (for methods and attributes)
	Description

	EntityHandlerFactory
	Class
	
	A factory class responsible to create the correct type of EntityHandler class.

	CustomsOfficeEntityHandler
	Interface
	
	An interface that is responsible for the customs office entity handling.

	SimpleEntityHandler
	Interface
	
	An interface that is responsible for the simple entity handling.

	EntitiesHandler
	Interface
	
	An interface that is responsible for entity handling.

	getHandler(in entityType) : EntitiesHandler
	Method
	EntityHandlerFactory
	A method that, depending the parameter passed to it (entityType), creates a class that implements the CustomsOfficeEntityHandler interface or the SimpleEntityHandler interface. The return type of this method is an EntityHandler object.

	create(in customsOfficeEntity : CustomsOfficeEntity)
	Method
	CustomsOfficeEntityHandler
	This method creates a customs office entity. It takes a CustomsOfficeEntity as an input, and takes over the responsibility to do a transaction to the database to create this object.

	update(in customsOfficeEntity : CustomsOfficeEntity)
	Method
	CustomsOfficeEntityHandler
	This method updates a customs office entity. It takes a CustomsOfficeEntity as an input, and takes over the responsibility to do a transaction to the database to update this object.

	delete(in customsOfficeEntity : CustomsOfficeEntity)
	Method
	CustomsOfficeEntityHandler
	This method deletes a customs office entity. It takes a CustomsOfficeEntity as an input, and takes over the responsibility to do a transaction to the database to delete this object.

	find(in attributes[]) : CustomsOfficeEntity[0..*]
	Method
	CustomsOfficeEntityHandler
	This method takes as an input some attributes of the CustomsOfficeEntity and finds which customs office entities have these attributes. It then returns these objects.

	validate(in customsOfficeEntity : CustomsOfficeEntity) : Boolean
	Method
	CustomsOfficeEntityHandler
	This method takes as an input a CustomsOfficeEntity and checks if it is valid according to the business rules of the application.

	create(in simpleEntity : SimpleEntity)
	Method
	SimpleEntityHandler
	This method creates a simple entity. It takes a SimpleEntity as an input, and takes over the responsibility to do a transaction to the database to create this object.

	update(in simpleEntity : SimpleEntity)
	Method
	SimpleEntityHandler
	This method updates a simple entity. It takes a SimpleEntity as an input, and takes over the responsibility to do a transaction to the database to update this object.

	delete(in simpleEntity : simpleEntity)
	Method
	SimpleEntityHandler
	This method deletes a simple entity. It takes a SimpleEntity as an input, and takes over the responsibility to do a transaction to the database to delete this object.

	find(in attributes[]) : SimpleEntity[0..*]
	Method
	SimpleEntityHandler
	This method takes as an input some attributes of the SimpleEntity and finds which customs office entities have these attributes. It then returns these objects.

	validate(in simpleEntity : SimpleEntity) : Boolean
	Method
	SimpleEntityHandler
	This method takes as an input a SimpleEntity and checks if it is valid according to the business rules of the application.

	create(in entity : Entity)
	Method
	EntitiesHandler
	This method creates an entity. It takes an Entity as an input, and takes over the responsibility to do a transaction to the database to create this object.

	update(in entity : Entity)
	Method
	EntitiesHandler
	This method updates an entity. It takes an Entity as an input, and takes over the responsibility to do a transaction to the database to update this object.

	delete(in entity : Entity)
	Method
	EntitiesHandler
	This method deletes an entity. It takes a Entity as an input, and takes over the responsibility to do a transaction to the database to delete this object.

	find(in attributes[]) : Entity[0..*]
	Method
	EntitiesHandler
	This method takes as an input some attributes of the Entity and finds which entities have these attributes. It then returns these objects.

	validate(in entity : Entity) : Boolean
	Method
	EntitiesHandler
	This method takes as an input an Entity and checks if it is valid according to the business rules of the application.


Table 4‑10: Entity package description


[image: image22.emf]+getHandler(in entityType) : EntitiesHandler

EntityHandlerFactory

+create(in entity : Entity)

+update(in entity : Entity)

+delete(in entity : Entity)

+find(in attributes[]) : Entity

+validate(in entity : Entity) : Boolean

«interface»

EntitiesHandler

c

r

e

a

t

e

s

c

r

e

a

t

e

s

+create(in customsOfficeEntity : CustomsOfficeEntity)

+update(in customsOfficeEntity : CustomsOfficeEntity)

+delete(in customsOfficeEntity : CustomsOfficeEntity)

+find(in attributes[]) : CustomsOfficeEntity

+validate(in customsOfficeEntity : CustomsOfficeEntity) : Boolean

«interface»

CustomsOfficeEntityHandler

+create(in simpleEntity : SimpleEntity)

+update(in simpleEntity : SimpleEntity)

+delete(in simpleEntity : SimpleEntity)

+find(in attributes[]) : SimpleEntity

+validate(in simpleEntity : SimpleEntity) : Boolean

«interface»

SimpleEntityHandler


Figure 4‑11 – Entity package
4.2.10 Work-Package Package
 The work-package package contains:
	Name
	Type
	Class/Interface (for methods and attributes)
	Description

	WorkpackageManager
	Interface
	
	An interface that is responsible for the handling of the work-packages, and the assignment of reference data actions on them.

	create() : Workpackage
	Method
	WorkpackageManager
	This method creates a new Workpackage, which returns as an output parameter.

	assignAction(in workpackage : Workpackage, in entity : Entity)
	Method
	WorkpackageManager
	This method assigns a reference data entity action (create/update/delete of a reference data item) to a work-package. The input parameters are the Workpackage in which the action is assigned, and the Entity which contains a reference data entity along with the action.

	publish(in workpackage : Workpackage)
	Method
	WorkpackageManager
	This method publishes a work-package, which takes as an input parameter.

	cancel(in workpackage : Workpackage)
	Method
	WorkpackageManager
	This method cancels a work-package, which takes as an input parameter.


Table 4‑11: Work-Package package description


[image: image23.emf]+create() : Workpackage

+assignAction(in workpackage : Workpackage, in entity : Entity)

+publish(in workpackage : Workpackage)

+cancel(in workpackage : Workpackage)

«interface»

WorkpackageManager


Figure 4‑12 – Work-Package package
4.2.11 Publisher Package
The publisher package contains:
	Name
	Type
	Class/Interface (for methods and attributes)
	Description

	NotificationManager
	Interface
	
	An interface that is responsible for the handling of the work-packages, and the assignment of reference data actions on them.

	validateDestination(in destination)
	Method
	NotificationManager
	This method takes as an input a destination and validates it. Validation of a destination means the checking of e.g. an email or a CCN queue (for example an email without a “@” symbol is invalid).

	createRecipientList(in workpackage : Workpackage) : List
	Method
	NotificationManager
	This method creates and returns the recipient list of the subscribers that are going to receive the messages with the contents of the work-package that has been published, which takes as an input parameter.

	sendRequest(in request : Request)
	Method
	NotificationManager
	This method sends a Request object, which takes as an input parameter.


Table 4‑12: Publisher package description


[image: image24.emf]+validateDestination(in destination)

+createRecipientList(in workpackage : Workpackage) : List

+sendRequest(in request : Request)

«interface»

NotificationManager


Figure 4‑13 – Publisher package
4.3 Domain
The domain layer shows a conceptual model of the system which describes the various entities involved.
In Figure 4‑14 the main entities of the system are demonstrated and each package is decomposed in classes. Please note that for readability reasons all methods that are used to manipulate attributes in the classes of the domain layer that are private (like setters and getters) are not shown in the diagrams:

[image: image25.emf]RequestRe

sponse

Entity

UsersAndG

roups

Workpackage

IeMessage

BusinessD

omain


Figure 4‑14 – Domain

The entity Request/Response is generic. In the following figure, entities which inherit from Request/Response are presented. All these are part of the Request/Response package. All these requests and responses circulate in the system as java objects but all have an XML representation, so depending on the implementation they can be transformed in an XML format at any time required. For this XML representation a framework like JAXB can be used.

 

Figure 4‑15 – Request Response package
The business entities of the system are divided into two categories. The Customs Offices and all the other entities, characterized as simple entities.


[image: image27.emf]-entityType

-attribute[]

-descriptions[]

«entity»

SimpleEntity

-attribute[]

-descriptions[]

«entity»

CustomsOfficeEntity


Figure 4‑16 – Entity package
The Users and Groups package contains the classes User, Users group, Roles, Profile and Subscription. The first is used to describe the users, the second to describe the profiles of the users, and the third one the subscriptions of the users.

[image: image28.emf]-subscriptionType

-typeOfMessage

-colPertinentOnly

-username

-domain

-queueOrMail

-format

-encoding

-mimeType

-frequency

-messageType

-countries

-posackMsgreq

«entity»

Subscription

-username

-email

-country

-domains

«entity»

User

-entity

-domain

-rights

«entity»

Profile

1

1

*

1

-group name

-entity

-domain

-rights

<<entity>> Users 

group

-role name

-entity

-domain

-rights

<<entity>> roles

*

*

*

*


Figure 4‑17 – Users and Groups package
The Workpackage class is the class which describes the work package.

[image: image29.emf]-state

-owner

-actions[]

«entity»

Workpackage


Figure 4‑18 – Work-Package package

The IeMessage class is the class which describes the IE messages.


[image: image30.emf]-messageType

-messageHeader

-messageBody

-metaInfo

«entity»

IeMessage

«entity»

XmlMessage

«entity»

EdifactMessage


Figure 4‑19 – IE Message package

The BusinessDomain class is the class which describes the business domains.


[image: image31.emf]-status

-phases[]

«entity»

BusinessDomain


Figure 4‑20 – Business Domain package

BusinessDomain class has status property and an array of phases. NCTS with status “active” and phases “3.2” and “4” is an example of BusinessDomain instance.
4.4 Persistence

This section lists the classes which handle the persistent data of the application. These data are divided into three main categories. The first handles the CustomsOffice entity, which has a completely different behaviour than the other entities, and it is stored and represented in different database tables.
All the other entities which are very similar in their structure and their behaviour can be stored in the same database tables and are the second category, which is the SimpleEntities.
The third category is the published resources which are actually not stored in the database, but in the local file system. These files are the extractions/retrievals that the users have requested, the functional messages that the system has produced (e.g. IE913) and the messages that the system has produced to send to the subscribers. These are considered as persistence data but are handled in a whole different category, as they are not stored in the database.

DAO and Factory design patterns are used while handling persistence data layer of the application.

[image: image32.emf]+getCustomsOfficeDAO() : CustomsOfficeDAO

+getSimpleEntityDAO() : SimpleEntityDAO

+getResourcesDAO() : ResourcesDAO

DAOFactory

create()

CustomsOfficeDAO create()

ResourcesDAO

create()

SimpleEntityDAO

+DAOFactoryImpl()

DAOFactoryImpl

+insertCustomsOffice()

+deleteCustomsOffice()

+findCustomsOfficeById():CustomOfficeEntity[]

+findCustomsOfficeByCriteria():CustomOfficeEntity[]

+updateCustomsOffice()

«interface»

CustomsOfficeDAO

+insertSimpleEntity()

+deleteSimpleEntity()

+findSimpleEntityById():SimpleEntity[]

+findSimpleEntityByCriteria():SimpleEntity[]

+updateSimpleEntity()

«interface»

SimpleEntityDAO

+saveResource(message:File)

+getResource():File

«interface»

ResourcesDAO


Figure 4‑21 – DAO hierarchy
4.5 Services

The following figure lists services which are either external or global to the CS/RD application package (e.g. provided by the TATAF framework like UserManagement). Here, the description of what CS/RD needs to get from these services is described. How these services are actually going to be implemented is not considered as a part of the architecture but of the detailed design and implementation phase. These interfaces are actually a wrapper
 between the CS/RD application and the external systems/components that implement these.
Façade / Business Delegate design pattern is used also when CS/RD connects external systems.
A detailed description of these services follows:

	Name
	Type
	Class/Interface (for methods and attributes)
	Description

	UserManagement
	Interface
	
	This interface constitutes the wrapper which handles the user management on the side of the application. An external user management system is required to exist and provide an API with which this interface is going to communicate.

	CsiBridge
	Interface
	
	This interface constitutes the wrapper which handles the CSI network communication on the side of the application. An external CSI communication system is required to exist and provide an API with which this interface is going to communicate.

	HttpBridge
	Interface
	
	This interface constitutes the wrapper which handles the HTTP communication on the side of the application. An external HTTP communication system is required to exist and provide an API with which this interface is going to communicate. This service parses and creates the http pages that are taken as an input or provided as an output to and from the application accordingly.

	HttpController
	Interface
	
	Central access point for http Requests. Transforms standard HttpRequest to internal set of objects and for creation of HttpResponse

	Logging
	Interface
	
	This interface is responsible for the logging of the application. Calls to logging for instance will not be shown, and will be implemented by a specific framework (Log4J).

	Scheduler
	Interface
	
	This interface constitutes the wrapper which handles the scheduling of events on the side of the application. An external scheduled events system is required to exist and provide an API with which this interface is going to communicate.

	authorize(in user :User)
	Method
	UserManagement
	This method takes as an input parameter a User object and checks that the user has the rights to do a specific action.

	getUserProfile(in user : User) : Profile
	Method
	UserManagement
	This method takes as an input parameter a User object and returns the user’s profile.

	getUser() : User
	Method
	UserManagement
	This method returns a specific User object.

	putMessageInQueue(in message : IeMessage)
	Method
	CsiBridge
	This method takes as an input parameter an IeMessage object and puts it on a queue of the CCN/CSI network.

	getMessageFromQueue() : IeMessage
	Method
	CsiBridge
	This method takes an IeMessage from a queue of the CCN/CSI network and returns it.

	browseQueue()
	Method
	CsiBridge
	This method checks whether a queue of the CCN/CSI network has any message or not.

	clearQueue()
	Method
	CsiBridge
	This method clears a queue of the CCN/CSI network from any messages that exist.

	receiveHttpRequest()
	Method
	HttpBridge
	This method receives an HTTP request.

	receiveHttpResponse()
	Method
	HttpBridge
	This method receives an HTTP response.

	serveHttpRequest(in httpRequest :HttpServletRequest):Map
	Method
	HttpController
	This method transforms Http Request to mediate standard Map object

	serveResponse(in response):HttpServletResponse
	Method
	HttpController
	This method transforms internal response object to standard HttpResponse

	log(in message, in level)
	Method
	Logging
	This method takes as input parameters a message and a level, and logs the message having this specific level.

	setLevel( in level)
	Method
	Logging
	This method sets the log level.

	getLevel():Integer
	Method
	Logging
	This method returns the current log level.

	triggerEvent(in timedEvent)
	Method
	Scheduler
	This method triggers a specific timed event.

	setScheduledEvent(in dateTime, in timedEvent)
	Method
	Scheduler
	This method sets a schedule for the execution of an event.

	getScheduledEvent(in dateTime)
	Method
	Scheduler
	This method gets the schedule of a timed event.


Table 4‑13: Services description

 
[image: image33.emf]+log(in message, in level)

+setLevel(in level)

+getLevel():Integer

«interface»

Logging


[image: image34.emf]+authenticate(in user : User)

+authorize(in user : User)

+getUserProfile(in user : User) : Profile

+getUser() : User

«interface»

UserManagement

+putMessageInQueue(in message : IeMessage)

+getMessageFromQueue() : IeMessage

+browseQueue()

+clearQueue()

«interface»

CsiBridge

+receiveHttpRequest()

+receiveHttpResponse()

«interface»

HttpBridge

+triggerEvent(in timedEvent)

+setScheduledEvent(in dateTtme,in timedEvent)

+getScheduledEvent(in dateTime)

«interface»

Scheduler

+serveHttpRequest(in request:HttpServletRequest):Map

+serveResponse(in response:Response):HttpServletResponse

«interface»

HttpController


Figure 4‑22 –Services of the CS/RD application

5 Process View

5.1 Use-case realization

In the following section a sequence diagram along with an explanation for some of the use-cases described in section 3.3 can be found. We present only one use case scenario per use case, the most typical one because the reason why these sequence diagrams exist in this document is to provide the reader with an idea on how the system interfaces, classes and services interact.
The following sequence diagrams are at the same level of details as the various class depicted in the logical view. The sequence diagrams presented in this view will present how the objects presented in the logical view will interact between each other, and when and how they are communicating with each other, by messages calls to various object interface.  In that sense, the message names are identical to the methods that are offered by each and every interface of the logical view. If the sequence diagram reaches the level of code, it actually becomes useless as it would become extremely big and unreadable. So, the basic flow of the use case is described based on the interfaces and methods described on the logical view, and information that can be easily assumed or can change during the implementation phase is omitted.
5.1.1 Sequence Diagram – Create New Simple Entity
In the sequence diagram below (Figure 5‑1) the use case where a user with read/write access (e.g. Common Operator) creates a new simple Entity (e.g. country, language, etc.) is shown.

· He/she does this operation via the graphical interface, so he/she completes the forms and clicks the submit button;

· An HTTP Request is send to the HttpBridge;

· The HttpBridge forwards the HTTP Request to the HttpController. The latter one transforms it to  Map object called “simpleEntityModificationRequest” in the diagram and passes it to the RequestResponseProcessor to create  an internal Request object which contains all the data of the user’s request;

· The user who made the request is referenced in the metadata included in this request, so it is asked from the UserManagement service to authorize  the user; Role based access control will be used for authorization approach.
· If the answer is negative we follow the alternative path of this use case which is displayed in red, inside a conditional box. So, in this case an AuthorizationDeniedHttpPage is send back to the HttpBridge which displays it to the screen of the user;

· If the answer is positive, we have the main path of the use case. In this case the RequestResponseProcessor requests the EntityHandlerFactory to create a SimpleEntityHandler object;
· Then the SimpleEntityHandler is responsible to validate the business correctness of the simple entity to be created. It uses the validate() method to do so;

· If the answer is negative we have another alternative path in this use case. A negative response page is returned to the user informing him/her about the error that occurred;

· If the answer is positive the SimpleEntityHandler creates the occurrence by using the appropriate DAO implementation;

· Finally, the SimpleEntityHandler uses the RequestResponseProcessor to create a response object and the response is sent back to the HTTPController which forwards it to the user in the format of a success HTTP page.


[image: image35.emf]alt

alt

Process View::CSRDUserWithReadWriteAccess

sendInternalRequest(simpleEntityModificationRequest)

authorise(User)

false

true

OK

successHttpPage

createResponse()

createRequest(simpleEntityModificationRequest)

serveResponse(response)

receiveHttpResponse(negativeHttpResponse)

SimpleEntityHandler

validate(simpleEntity)

serveResponse(response)

serveResponse(response)

receiveHttpResponse(negativeHttpResponse)

false

true

receiveHttpRequest(httpRequest)

getHandler(simpleEntity)

create(SimpleEntity)

create()

negativeHttpResponse

negativeHttpResponse

serveHttpRequest(httpRequest)

HttpResponse

: Presentation::HttpBridge : Services::HttpController

: RequestResponseProcessor:

:RequestResponse

: Entity::EntityHandlerFactory

: Services::UserManagement : Entity::SimpleEntityHandler

:Persistence::SimpleEntityDAO

createResponse()


Figure 5‑1 – Sequence Diagram: Create New Simple Entity

5.1.2 Sequence Diagram – Extract Simple Entity

In the sequence diagram below (Figure 5‑2) the use case where a user with read access extracts data for a new simple Entity (e.g. country, language, etc.) is shown.

· He/she does this operation via the graphical interface, so he/she completes the forms and clicks the submit button;

· An HTTP Request is send to the HttpBridge;

· The HttpBridge forwards the HTTP Request to the HttpController. The latter one transforms it to Map object called “extractionRequest” in the diagram and passes it to the RequestResponseProcessor to create an internal Request object which contains all the data of the user’s request;

· The RequestResponseProcessor requests the SimpleEntityDataExportFactory to create a SimpleEntityExtract object;
· Then the SimpleEntityExtract object contact the EntityHanlderFactory and requests to create a SimpleEntityHandler object which uses the SimpleEntityDAO to find the appropriate simple entity entries that are requested by the extraction, via the criteria set there;

· Then the SimpleEntityExtract object is responsible to create the message containing the requested data and to contact the ResourcesDAO to save this message;

· Finally, the SimpleEntityExtract uses the RequestResponseProcessor to create a response object and the response is sent back to the HTTPController which forwards it to the user in the format of a success HTTP page.


[image: image36.emf]sendInternalRequest(DataExportRequest)

Process View::CSRDUserWithReadAccess

doExtract()

find(attributes[])

SimpleEntity[]

getHandler(simpleEntity)

findSimpleEntityByCriteria(attributes[])

serveResponse(response)

saveResource(message)

OK

receiveHttpRequest(httpRequest)

createRequest(extractionRequest)

getMessageDataExportObject(messageType)

SimpleEntityExtract

SimpleEntityHandler

createMessage(simpleEntity[])

SimpleEntity[]

createResponse()

successHttpPage

serveHttpRequest(httpRequest)

HttpResponse

: Presentation::HttpBridge : Services::HttpController

: RequestResponseProcessor:

:RequestResponse

: DataExport::

SimpleEntityMessageForDataExportFactory

: Persistence::ResourcesDAO

: DataExport::SimpleEntityExtract

: Entity::EntityHandlerFactory

: Entity::SimpleEntityHandler

: Persistence::SimpleEntityDAO


Figure 5‑2 – Sequence Diagram: Extract Simple Entity Reference Data

5.1.3 Sequence Diagram – Upload Message for Simple Entity

In the sequence diagram below(Figure 5‑3), the use case where a user with read/write access (e.g. Common Operator) uploads a message that contains data for a new simple Entity (e.g. country, language, etc.) is shown.

· He/she does this operation via the graphical interface, so he/she completes the forms and clicks the submit button;

· An HTTP Request is send to the HttpBridge;

· The HttpBridge forwards the HTTP Request to the HttpController. The latter one transforms it to Map object called “dataImportRequest” in the diagram and passes it to the RequestResponseProcessor to create an internal Request object which contains all the data of the user’s request;

· The user who made the request is referenced in the metadata included in this request, so it is asked from the UserManagement service to authorize the user;

· If the answer is negative we follow the alternative path of this use case which is displayed in red, inside a conditional box. So, in this case an AuthorizationDeniedHttpPage is send back to the HttpBridge which displays it to the screen of the user;

· If the answer is positive, we have the main path of the use case. In this case the RequestResponseProcessor sends the Request to the MessageForDataImport;

· Then the MessageForDataImport uses the validate method of the SchemaValidation in order to do the schema validation for the message to be uploaded;

· If the answer is negative we have another alternative path in this use case. A negative response page is returned to the user informing him/her about the error that occurred, and also a negative response message (IE913) is saved and is available for the user to download;
· If the answer is positive the MessageForDataImport parse the message transforming it to a SimpleEntity object (or a set of simple Entities objects) and requests the EntityHandlerFactory to create a SimpleEntityHandler object, to which it passes the request to create the SimpleEntities objects created by the message parsing;
· Then the SimpleEntityHandler is responsible to validate the business correctness of the simple entity to be created. It uses the validate() method to do so;

· If the answer is negative we have another alternative path in this use case. A negative response page is returned to the user informing him/her about the error that occurred;

· If the answer is positive the SimpleEntityHandler creates the occurrence by using the appropriate DAO implementation;

· Finally, the SimpleEntityHandler uses the RequestResponseProcessor to create a response object and the response is sent back to the HTTPController which forwards it to the user in the format of a success HTTP page.


 
Figure 5‑3 – Sequence Diagram: Upload Message for Simple Entity (XML without transformation)

5.1.4 Sequence Diagram - Scheduled Data Replication

In the sequence diagram below (Figure 5‑4), the use case where a scheduled data replication is shown.

· The scheduled job is triggered;

· The Scheduler uses the RequestResponseProcessor to create a Request object and passes it to the RequestResponseProcessor which parses the request and transforms it to a data export Request object which contains all the data of the user’s request;

· The RequestResponseProcessor requests the SimpleEntityDataExportFactory to create a SimpleEntityExtract object;

· Then the SimpleEntityExtract object contact the EntityHanlderFactory and requests to create a SimpleEntityHandler object which uses the SimpleEntityDAO to find the appropriate simple entity entries that are requested by the extraction, via the criteria set there;

· Then the SimpleEntityExtract object is responsible to create the message containing the requested data and to contact the ResourcesDAO to save this message;

· Finally, the SimpleEntityExtract uses the RequestResponseProcessor to create a response object and the response containing the message is forwarded through the caller Scheduler object to the CSI bridge in order to be sent to all registered subscribers.

[image: image38.emf]sendInternalRequest(DataExportRequest)

doExtract()

find(attributes[])

SimpleEntity[]

getHandler(simpleEntity)

findSimpleEntityByCriteria(attributes[])

Response

saveResource(message)

OK

getMessageDataExportObject(messageType)

SimpleEntityExtract

SimpleEntityHandler

createMessage(simpleEntity[])

SimpleEntity[]

createResponse()

Response

:Presentation::CSIBridge :Services::Scheduler

: RequestResponseProcessor:

:RequestResponse

: DataExport::SimpleEntityMessag

eForDataExportFactory

: Persistence::ResourcesDAO

: DataExport::SimpleEntityExtrac

t

: Entity::EntityHandlerFactory

: Entity::SimpleEntityHandler

: Persistence::SimpleEntityDAO

putMessageInQueue

Top Package::Subscriber

createRequest(exportRequest)

triggerEvent(timedEvent)


Figure 5‑4 – Sequence Diagram: Scheduled data replication job

6 Deployment View

Figure 6‑1 defines the typical physical network configuration of the application, and how the applications’ components will be deployed in the various nodes (servers that will host the components of the application).

[image: image39.emf]CCN Gateway

Transformation Server

Transformation Service

External Components Server

CCN Component

User Management

Application Server

CS/RD JEE Application

Persistence

Util Module

Presentation

EJB Module

Database Server

Database


Figure 6‑1 – Deployment View

A table describing the diagram above follows:

	Component or Node
	Description

	CCN Gateway (Node)
	The Commission’s CCN/CSI network Gateway. This Node is essential in order for the application to send/receive message through its queues. The application is also able to use the HTTP protocol inside the CCN network for security reasons.

	External Components Server (Node)
	The server that hosts the external components of the application used by TATAF [R07]. The server should be able to support the components of TATAF and its characteristics depend on the requirements of these components.

	CCN component (Component)
	The TATAF’s [R07] CSI Bridge component.

	User Management (Component)
	The TATAF’s [R07] User Management component.

	Application Server (Node)
	The server that hosts the application. It contains the core JEE application as well as some components that consist the application’s logic.

	EJB Module (Component)
	The component which contains the Enterprise Java Beans.

	Presentation (Component)
	The Presentation is also hosted in this server. It is part of  the ear file deployed here.

	CS/RD JEE Application (Component)
	The heart of the application. Where the application’s core is installed.

	Util Module (Component)
	The vertical layer services (as defined in 4.5) are inside this component which is deployed in the Application Server.

	Persistence (Component)
	The persistence layer (as defined in 0) is inside this component which is deployed in the Application Server.

	Transformation Server (Node)
	The server that provides XML/EDIFAT transformation service, 

	Transformation Service (Component)
	The component that is in charge of IE messages transformation. 

	Database Server (Node)
	The server that hosts the database.

	Database (Component)
	The database component.


Table 6‑1: Components and Nodes descriptions
7 Implementation View

7.1 Application Protocols

· Hypertext Transfer Protocol Secure (HTTPS) combines the Hypertext Transfer Protocol with the SSL/TLS protocol to offer encryption and secure identification of the server. This protocol is needed for the implementation of the synchronous request/response with or without e-mail notification communication model;
· Simple Mail Transfer Protocol (SMTP) is an Internet standard which uses the Internet Protocol (IP) for the transmission of electronic mail (e-mail). This protocol is needed for the implementation of the synchronous or asynchronous request/response with e-mail notification (with or without possibility of download);
· Common Communication Network/Common System Interface (CCN/CSI) is an essential component of DG-TAXUD’s technical infrastructure as it provides message exchange facilities with the outside world. The CCN system constitutes the link between the CCN network queues and the application servers, which host the different applications. This protocol is used for the asynchronous request/response communication.
7.2 System Technologies

The CS/RD application is built using Java programming language and more specifically based on Java Platform Enterprise Edition (JEE). JEE technology offers a scalable industry standard for building enterprise application.
The technologies used for the application
 can be divided into three main categories:

7.2.1 Graphical User Interface
For the graphical interface, which is web based, the application uses the following technologies:

	Technologies
	Short Description

	JSP
	JavaServer Pages (JSP) is a Java technology that helps software developers serve dynamically generated web pages based on HTML, XML, or other document types.

	CSS
	Cascading Style Sheets (CSS) is a style sheet language used to describe the presentation semantics (the look and formatting) of a document written in a markup language.

	AJAX
	Asynchronous JavaScript and XML (AJAX) is a group of interrelated web development techniques used on the client-side to create interactive web applications. With Ajax, web applications can retrieve data from the server asynchronously in the background without interfering with the display and behavior of the existing page. The use of Ajax techniques has led to an increase in interactive or dynamic interfaces on web pages.


7.2.2 Application Logic
For the implementation of the application the following technologies are used:

	Technologies
	Short Description

	Java core (JDK)
	The java programming language core (without extension libraries).

	JMS
	The Java Message Service (JMS) API is a Java Message Oriented Middleware (MOM) API for sending messages between two or more clients.
The JMS specification is one of several Java APIs in the Java EE specification.

	EJB
	Enterprise JavaBeans (EJB) is a managed, server-side component architecture for modular construction of enterprise applications.

The EJB specification is one of several Java APIs in the Java EE specification.

	Java Mail
	JavaMail is a Java API used to receive and send email. JavaMail is built into the Java EE platform.

	JAXB
	Java Architecture for XML Binding (JAXB) allows Java developers to map Java classes to XML representations. JAXB provides two main features: the ability to marshal Java objects into XML and the inverse, i.e. to unmarshal XML back into Java objects. In other words, JAXB allows storing and retrieving data in memory in any XML format, without the need to implement a specific set of XML loading and saving routines for the program's class structure.

	Spring
	Spring is a layered Java/J2EE application platform, and includes amongst others a complete lightweight container, a common abstraction layer for transaction management and a JDBC abstraction layer.


7.2.3 Persistence
For the persistence part of the application the following technologies are used. Today TATAF is EJB 2 compliant and does not support Hibernate but native JDBC calls.

	Technologies
	Short Description

	JPA
	The Java Persistence API deals with the way relational data is mapped to Java objects ("persistent entities"), the way that these objects are stored in a relational database so that they can be accessed at a later time, and the continued existence of an entity's state even after the application that uses it ends. In addition to simplifying the entity persistence model, the Java Persistence API standardizes object-relational mapping.


7.3 Design Patterns

For the design of the application standard design patterns were used.

In Table 7‑1 there is a list of the design patterns used, along with a short description of them and the packages and/or components where these patterns were used:
	Pattern
	Short Description
	Applicable Package or Component

	Composite View
	Sophisticated Web pages present content from numerous data sources, using multiple subviews that comprise a single display page. Additionally, a variety of individuals with different skill sets contribute to the development and maintenance of these Web pages.
	GUI

	Front Controller
	Using a single component to process application requests.
	HttpController.

	Intercepting Filter
	The presentation-tier request handling mechanism receives many different types of requests, which require varied types of processing. Some requests are simply forwarded to the appropriate handler component, while other requests must be modified, audited, or uncompressed before being further processed.
	Security service

	Factory
	Provides an abstraction or an interface and lets subclass or implementing classes decide which class or method should be instantiated or called, based on the conditions or parameters given
	Data Import, Data Export, Message Transformation, Entity, DAO

	Service Activator
	Enterprise beans and other business services need a way to be activated asynchronously.
	Request Response Processor

	Transfer Object Assembler
	Uses Transfer Objects to retrieve data from various business objects and other objects that define the model or part of the model.
	Request / Response object

	Composite Entity
	The composite entity's interface is coarse-grained, and it manages interactions between fine-grained objects internally.
The usage of the composite entity pattern is especially useful for efficiently managing relationships to dependent objects.
Also known as Aggregate Entity.
	Entity object

	Façade / Business Delegate
	Make a complex system simpler by providing a unified or general interface, which is a higher layer to these subsystems.
	Message Transformation, Message Validation, Workpackage Manager

	DAO (Data Access Object)
	Adapt a uniform interface to access multiple databases like relational, hierarchical, object-oriented, etc.
	Simple entity persistence, Customs Office entity persistence

	Chain of Responsibility
	Let more than one object handle a request without their knowing each other. Pass the request to chained objects until it has been handled.
	Request/Response

	Model-View-Controller (MVC)
	Using the MVC pattern one can separate core business model functionality from the presentation and control logic that uses this functionality. Such separation allows multiple views to share the same enterprise data model, which makes supporting multiple clients easier to implement, test, and maintain.
	Domain-Presentation-Application packages


Table 7‑1: Design Patterns Used

8 Error Handling
8.1 Error and Exception Handling

There are three (3) main categories of errors and exceptions that may occur in the application.

Warning category:
The first is the Warning category where something is not proceeded as expected, but this does not affect the application and it does not even affect the component where it happened. The system should only report what happened to the administrator in order to take care and take the appropriate actions in order the issues not to become more serious.
For example, when a user tries to create a reference data item that already exists in the system, the system throws a warning that says that the reference data item already exists and cannot be inserted to the system. Another example may be that a user tries to do something that is not allowed to do. The system should report this to the administrator, as it may be a malicious attack to the system.

Error category:

The second is the Error category where something has gone seriously wrong in a subsystem but this does not affect the whole application and even the subsystem where the error has happened may recover. The system should report what happened to the administrator but also tries to recover by itself.

For example, the memory of the system has increased too much and there is not enough memory to server all incoming requests. So, some requests are not served. The system will keep these requests and will try to serve them when some memory is freed but it will also warn the administrator in order to take care in case something more serious is happening.

Fatal category:

The third is the Fatal category where something is seriously wrong in the application. One or more subsystems may have failed or even the application may have crashed. In most cases these types of errors are not self-recoverable and the administrator should take care to fix them, so the system warns the administrator about them.

An example might be when the connection to the database is lost. The system retries to achieve a connection to the database but this is not possible. Some subsystems may be still running normally but a lot of the services that the application offers are not available any more. The administrator should take care and fix the error to the database (e.g. a connection error exists and the administrator must fix the connection, the database service has stopped and the administrator must restart it, etc).

A table summarizing these is displayed below:

	Category
	Impact
	System can recover

	Warning
	Minimal
	Yes

	Error
	Partial
	Yes

	Fatal
	Very big on subsystems or whole system
	No


Table 8‑1: Exception Categories
� The technical architecture of the CS/RD application is based on the Functional Specifications � REF _Ref269214218 \r \h ��[R05]� which are not expressed in terms of use-cases but of requirements. Thus, in this document only the architecturally important use cases will be described, in order to verify that the architecture is capable to implement and fulfill these use cases.


� If external users need to be authenticated, the system to use is ECAS (� REF _Ref269209083 \r \h ��[R07]� section 9.4).


� In CS/RD the users are not managed by the application itself. The application uses the TATAF � REF _Ref269209083 \r \h ��[R07]� component UM (user management) to manage the users and to authorize and authenticate the users of the application. In any case we consider the administrator to be responsible for the user management even if this is not done in the strict context of the application itself.


� “Wrapper design pattern” or just “wrapper” is also known as the “adapter design pattern” and its role is to translate one interface for a class into a compatible interface.


� This is an example of technologies that could be used but this does not mean that all of these technologies will be actually used or that some other technologies are strictly not to be used when and if they are needed.







Page 3/6

_1343116127.vsd
+transformMessage(in xmlMessage : XmlMessage) : EdifactMessage


«interface»
XmlMessageTransformation


+transformMessage(in edifactMessage : EdifactMessage) : XmlMessage


«interface»
EdifactMessageTransformation


creates


creates


+transformMessage(in message : IeMessage) : IeMessage


«interface»
MessageTransformation


+getMessageTransformation(in messageFormat) : MessageTransformation


MessageTransformationFactory


_1367398428.vsd
HttpRequest


: Web Server

: GUI

: Business Logic

InternalSystemRequest


Response


HttpResponse



_1367530325.vsd
+log(in message, in level)
+setLevel(in level)
+getLevel():Integer


«interface»
Logging



_1367530958.vsd
+sendMail()


«interface»
Mailer


+putMessageInQueue(in message : IeMessage)
+getMessageFromQueue() : IeMessage
+browseQueue()
+clearQueue()


«interface»
CsiBridge


+receiveHttpRequest(httpRequest : 
                                   HTTPRequest)
+receiveHttpResponse(httpResponse :
                                   HTTPResponse)


«interface»
HttpBridge



_1367534039.vsd
InternalAsynchRequest


: GUI

: Web Server

: Business Logic


HttpResponse


PublishMessage


HttpRequest


ProcessingRequest1


DownloadRequest1


DownloadResponse1


DownloadRequest2


DownloadResponse2



_1367532389.vsd
+getCustomsOfficeDAO() : CustomsOfficeDAO
+getSimpleEntityDAO() : SimpleEntityDAO
+getResourcesDAO() : ResourcesDAO


DAOFactory

create()


CustomsOfficeDAO


create()


ResourcesDAO


create()


SimpleEntityDAO


+DAOFactoryImpl()


DAOFactoryImpl

+insertCustomsOffice()
+deleteCustomsOffice()
+findCustomsOfficeById():CustomOfficeEntity[]
+findCustomsOfficeByCriteria():CustomOfficeEntity[]
+updateCustomsOffice()


«interface»
CustomsOfficeDAO


+insertSimpleEntity()
+deleteSimpleEntity()
+findSimpleEntityById():SimpleEntity[]
+findSimpleEntityByCriteria():SimpleEntity[]
+updateSimpleEntity()


«interface»
SimpleEntityDAO


+saveResource(message:File)
+getResource():File


«interface»
ResourcesDAO



_1367530514.vsd
+createSubscription(in subscription : Subscription)
+deleteSubscription(in subscription : Subscription)
+updateSubscription(in subscription : Subscription)
+findDestinations(in request : Request):Object[]


«interface»
Subscription



_1367530346.vsd
+authenticate(in user : User)
+authorize(in user : User)
+getUserProfile(in user : User) : Profile
+getUser() : User


«interface»
UserManagement


+receiveHttpRequest()
+receiveHttpResponse()


«interface»
HttpBridge


+triggerEvent(in timedEvent)
+setScheduledEvent(in dateTtme,in timedEvent)
+getScheduledEvent(in dateTime)


«interface»
Scheduler


+putMessageInQueue(in message : IeMessage)
+getMessageFromQueue() : IeMessage
+browseQueue()
+clearQueue()


«interface»
CsiBridge


+serveHttpRequest(in request:HttpServletRequest):Map
+serveResponse(in response:Response):HttpServletResponse


«interface»
HttpController



_1367513110.vsd
Process View::CSRDUserWithReadAccess


serveHttpRequest(httpRequest)


sendInternalRequest(DataExportRequest)


 : Services::HttpController


 : RequestResponseProcessor:
:RequestResponse


createRequest(extractionRequest)


 : Entity::SimpleEntityHandler


getMessageDataExportObject(messageType)


 : Persistence::SimpleEntityDAO


SimpleEntityExtract


doExtract()


 : DataExport::
SimpleEntityMessageForDataExportFactory


getHandler(simpleEntity)


findSimpleEntityByCriteria(attributes[])


SimpleEntity[]


successHttpPage


serveResponse(response)


saveResource(message)


OK


SimpleEntityHandler


createMessage(simpleEntity[])


createResponse()


find(attributes[])


SimpleEntity[]


HttpResponse


 : Persistence::ResourcesDAO


 : DataExport::SimpleEntityExtract


 : Entity::EntityHandlerFactory


receiveHttpRequest(httpRequest)


 : Presentation::HttpBridge



_1367529070.vsd
Process View::CSRDUserWithReadWriteAccess


serveHttpRequest(httpRequest)


getHandler(simpleEntity)


create()


sendInternalRequest(simpleEntityModificationRequest)


create(SimpleEntity)


HttpResponse


negativeHttpResponse


negativeHttpResponse


SimpleEntityHandler


validate(simpleEntity)


serveResponse(response)


alt


authorise(User)


false


false


true


true


serveResponse(response)


OK


createResponse()


serveResponse(response)


successHttpPage


receiveHttpResponse(negativeHttpResponse)


createRequest(simpleEntityModificationRequest)


 : Services::HttpController


 : RequestResponseProcessor:
:RequestResponse


alt


 : Services::UserManagement


 : Entity::SimpleEntityHandler


receiveHttpResponse(negativeHttpResponse)


 : Entity::EntityHandlerFactory


receiveHttpRequest(httpRequest)


 : Presentation::HttpBridge


:Persistence::SimpleEntityDAO


createResponse()



_1367514461.vsd
authorize(user)


sendInternalRequest(simpleEntityModificationRequest)


serveHttpRequest(httpRequest)


Process View::CSRDUserWithReadWriteAccess


validateMessage(ieMessage)


false


serveResponse(response)


getHandler(entityType)


SimpleEntityHandler


receiveRequest(simpleEntityModificationRequest)


 : Entity::SimpleEntityHandler


 : Persistence::SimpleEntityDAO


createResponse()


negativeHttpResponse


create(SimpleEntity)


validate(SimpleEntity)


false


alt


receiveRequest(request)


saveResource()


OK


sendResponse(response)


createResponse()


serveResponse(response)


receiveHttpResponse(negativeHttpResponse)


negativeHttpResponse


alt


receiveHttpResponse(negativeHttpResponse)


alt


negativeHttpResponse


true


create()


OK


createResponse()


serveResponse(response)


HttpResponse


successHttpPage


receiveHttpRequest(httpRequest)


false


serveResponse(response)


 : Services::HttpController


 : RequestResponseProcessor:
:RequestResponse


true


 : Services::UserManagement


 : DataImport::MessageForDataImport


 : FunctionalMessage


 : MessageValidation::SchemaValidation


receiveRequest(request)


createMessage(IE913)


saveResource()


OK


sendResponse(response)


 : Persistence::
ResourcesDAO


receiveHttpResponse(negativeHttpResponse)


true


 : Entity::EntityHandlerFactory


parseMessage(ieMessage)


createRequest(dataImportRequest)


 : Presentation::HttpBridge



_1367494766.vsd
SDR Subscriber


:CSIQueue

:JMSQueue

: Business Logic


MessageGet


MessageSend


ProcessingRequest


Response


InternalAsynchRequest


MessageReceive


MessageDeliver



_1367496636.vsd
putMessageInQueue


sendInternalRequest(DataExportRequest)


:Services::Scheduler


 : RequestResponseProcessor:
:RequestResponse


 : Entity::SimpleEntityHandler


getMessageDataExportObject(messageType)


 : Persistence::SimpleEntityDAO


SimpleEntityExtract


doExtract()


 : DataExport::SimpleEntityMessag
eForDataExportFactory


getHandler(simpleEntity)


findSimpleEntityByCriteria(attributes[])


SimpleEntity[]


Response


saveResource(message)


OK


SimpleEntityHandler


createMessage(simpleEntity[])


createResponse()


find(attributes[])


SimpleEntity[]


Response


 : Persistence::ResourcesDAO


 : DataExport::SimpleEntityExtrac
t


 : Entity::EntityHandlerFactory


:Presentation::CSIBridge


Top Package::Subscriber


createRequest(exportRequest)


triggerEvent(timedEvent)



_1367259340.vsd
Common Domain User (CDU)


Manage COL


Import Reference Data


Update Broadcast


«extends»


«extends»


«extends»


«extends»


View History


Import COL


Manage Reference Data



_1367307060.vsd
National Data Administrator (NDA)


Validate IE030


Manage COL


Publish changes


Manage EOS


Export Reference Data


Query Reference Data


Manage Reference Data


Update Broadcast


«extends»


«extends»


Scheduled data replication


«uses»



_1367307155.vsd
 National Data User (NDU)


Export RD and COL


Query RD and COL



_1367350772.vsd
-subscriptionType
-typeOfMessage
-colPertinentOnly
-username
-domain
-queueOrMail
-format
-encoding
-mimeType
-frequency
-messageType
-countries
-posackMsgreq


«entity»
Subscription


-username
-email
-country
-domains


«entity»
User


-entity
-domain
-rights


«entity»
Profile


1


1


*


1


-group name
-entity
-domain
-rights


<<entity>> Users group

-role name
-entity
-domain
-rights


<<entity>> roles

1


*


*


*


*



_1367306545.vsd
Scheduled Data Replication Subscriber (SDRS) 


Receive COL 


«uses»


«uses»


Receive Reference Data


Scheduled data replication



_1363688033.vsd
+createMessage(in messageType) : IeMessage
+receiveRequest(in request : Request)
+sendResponse(in response : Response)


«interface»
FunctionalMessage



_1367234825.vsd
Administration


Common Domain  System Administrator
(CDSA)



_1367259035.vsd
User


Common Domain  System Administrator (CDSA)


Common Domain  User (CDU)


National Domain  Administrator
(NDA)


National Domain  User (NDU)


Scheduled Data  Replication Subscriber (SDRS)


External system


TARIC


SEED 


EOS


DDS 



_1365083650.vsd
Server


Workstations


Data


Commission user


National Administration User
(HTTP or CCN)


Commission Application
(JMS queues)


National Administration Application
(CCN queues)



_1365110806.vsd
Database Server

Database


Application Server

CS/RD JEE Application


Persistence


Util Module


Presentation


EJB Module


External Components Server

CCN Component


User Management


CCN Gateway

Transformation Server

Transformation Service



_1363688783.vsd
+create() : Workpackage
+assignAction(in workpackage : Workpackage, in entity : Entity)
+publish(in workpackage : Workpackage)
+cancel(in workpackage : Workpackage)


«interface»
WorkpackageManager



_1343122559.vsd
+validateDestination(in destination)
+createRecipientList(in workpackage : Workpackage) : List
+sendRequest(in request : Request)


«interface»
NotificationManager



_1343219223.vsd
+createRequest(in requestType : String) : Request
+createResponse() : Response
+sendInternalRequest(in request : Request)


«interface»
RequestResponse



_1343125281.vsd
-messageType
-messageHeader
-messageBody
-metaInfo


«entity»
IeMessage


«entity»
XmlMessage


«entity»
EdifactMessage



_1343117652.vsd
+getMessageDataExport(in messageType) : MessageForDataExport


AbstractMessageForDataExportFactory

+receiveRequest(in request : Request)
+sendResponse(in response : Response)
+createMessage(in entity : Entity) : IeMessage


«interface»
MessageForDataExport


creates


creates


+receiveRequest(in request : Request)
+sendResponse(in response : Response)
+doRetrieve() : SimpleEntity
+createMessage(in simpleEntity : SimpleEntity) : IeMessage


«interface»
SimpleEntityRetrieve


+receiveRequest(in request : Request)
+sendResponse(in response : Response)
+doExtract() : CustomsOfficeEntity
+createMessage(in customsOfficeEntity : CustomsOfficeEntity) : IeMessage


«interface»
CustomsOfficeExtract


+getMessageDataExport(in messageType) : MessageForDataExport


SimpleEntityMessageForDataExportFactory

+getMessageDataExport(in messageType) : MessageForDataExport


CustomsOfficeMessageForDataExportFactory

+receiveRequest(in request : Request)
+sendResponse(in response : Response)
+doExtract() : SimpleEntity
+createMessage(in simpleEntity : SimpleEntity) : IeMessage


«interface»
SimpleEntityExtract


creates


+receiveRequest(in request : Request)
+sendResponse(in response : Response)
+doRetrieve() : CustomsOfficeEntity
+createMessage(in customsOfficeEntity : CustomsOfficeEntity) : IeMessage


«interface»
CustomsOfficeRetrieve


creates



_1335790924.vsd
Entity

BusinessMessage

Subscription

Workpackage

Publisher

RequestResponseProcessor

Message Validation

Data Import

Data Export

Message Transformation

Mail

CCN

Functional Messages


_1343049622.vsd
Logical View::Presentation

Logical View::Application

Logical View::Domain

Logical View::Persistence

Logical View::Services


_1343116042.vsd
+receiveRequest(in request : Request)
+sendResponse(in response : Response)
+parseMessage(in message : IeMessage) : SimpleEntity


«interface»
SimpleEntityMessageDataImport


+receiveRequest(in request : Request)
+sendResponse(in response : Response)
+parseMessage(in message : IeMessage) : CustomsOfficeEntity


«interface»
CustomsOfficeMessageDataImport


+getMessageDataImport(in messageType) : MessageForDataImport


MessageForDataImportFactory

+receiveRequest(in request : Request)
+sendResponse(in response : Response)
+parseMessage(in message : IeMessage) : Entity


«interface»
MessageForDataImport


creates


creates



_1343115491.vsd
+create(in simpleEntity : SimpleEntity)
+update(in simpleEntity : SimpleEntity)
+delete(in simpleEntity : SimpleEntity)
+find(in attributes[]) : SimpleEntity
+validate(in simpleEntity : SimpleEntity) : Boolean


«interface»
SimpleEntityHandler


+getHandler(in entityType) : EntitiesHandler


EntityHandlerFactory

+create(in entity : Entity)
+update(in entity : Entity)
+delete(in entity : Entity)
+find(in attributes[]) : Entity
+validate(in entity : Entity) : Boolean


«interface»
EntitiesHandler


creates


creates


+create(in customsOfficeEntity : CustomsOfficeEntity)
+update(in customsOfficeEntity : CustomsOfficeEntity)
+delete(in customsOfficeEntity : CustomsOfficeEntity)
+find(in attributes[]) : CustomsOfficeEntity
+validate(in customsOfficeEntity : CustomsOfficeEntity) : Boolean


«interface»
CustomsOfficeEntityHandler



_1342957070.vsd
DDS


SEED


EOS


TARIC


Import Reference Data


Export Reference Data



_1335791466.vsd
UsersAndGroups

Workpackage

IeMessage

BusinessDomain

RequestResponse

Entity


_1333976732.vsd
+finalize()
+request()


-m_User : User
-state
-uuid


«entity»
Request


-format
-mimeType


HeaderInfo

+finalize()
+response()


-m_User : User
-status


«entity»
Response


ResponseData


MetaInfoRequest


HistoryRequest

CustomsOfficeQueryRequest


QueryData

SimpleEntityQueryRequest


QueryRequest

-mode


PresentationRequest


CustomsOfficeModificationRequest


SimpleEntityModificationRequest


-actions[]


WorkPackageOperationRequest


-actions[]


InternalRequest

InternalRequestData


_1333990352.vsd
+validateMessage(in message : IeMessage) : Boolean


«interface»
SchemaValidation



_1333980770.vsd
-status
-phases[]


«entity»
BusinessDomain



_1331390599.vsd
-state
-owner
-actions[]


«entity»
Workpackage



_1333207069.vsd
-entityType
-attribute[]
-descriptions[]


«entity»
SimpleEntity


-attribute[]
-descriptions[]


«entity»
CustomsOfficeEntity



_1330783055.vsd
+finalize()
+request()


-m_User : User
-state
-uuid


«entity»Request


-format
-mimeType


HeaderInfo

+finalize()
+response()


-m_User : User
-status


«entity»Response


ResponseData


-name


User

MetaInfoRequest


HistoryRequest

CustomsOfficeQueryRequest


QueryData

SimpleEntityQueryRequest


QueryRequest

-mode


PresentationRequest


-messageType


DataExportRequest

CustomsOfficeModificationRequest


SimpleEntityModificationRequest


-actions[]


WorkPackageOperationRequest


-actions[]


InternalProcess

InternalRequestData


_1330773219.vsd
+receiveRequest(in request)
+sendReply(in HttpPage)


«boundary»
HttpBridge


receiveRequest(presentationRequest)


sendInternalRequest(simpleEntityModificationRequest)


+receiveRequest(in request)
+sendResponse(in response)
+sendInternalRequest(in request)


-requestType


«control»
RequestResponseManager


receiveRequest(presentationRequest)


Process View::CSRDUserWithWriteAccess


isMessageValid()


false


sendReply(authorizationDeniedHttpPage)


parseMessage(IeMessage)


SimpleEntity


receiveRequest(simpleEntityModificationRequest)


UserManagement


+isMessageValid() : Boolean


sendReply(responseHttpPage)


sendReply(responseHttpPage)


+saveFile(in fileName, in inputStream)


ResourcePersistence

+receiveRequest(in Request)
+sendReply()
+parseMessage(in IeMessage) : SimpleEntity
+parseMessage(in IeMessage) : CustomsOfficeEntity


«control»
Application::IeMessageForDataImportManager


«control»Message Validation::XsdValidationManager


authenticate(User)


false(for CSRDUserWithReadAccess)


+checkBusinessRules() : Boolean


«control»Message Validation::BusinessValidationManager


true


sendReply(AuthorizationDeniedHttpPage)


-createMessage() : IeMessage
+receiveRequest(in Request)
+sendResponse(in Response)


-messageMetaData


«control»Functional Messages::FunctionalMessageManager


receiveRequest(request)


createMessage()


saveFile()


OK


sendResponse(response)


sendReply(responseHttpPage)


sendReply(responseHttpPage)


true


checkBusinessRules()


false


true


receiveRequest(request)


createMessage()


saveFile()


OK


sendResponse(response)


create(SimpleEntity)


create()


OK


+create(in simpleEntity)
+update(in simpleEntity)
+delete(in simpleEntity)
+find(in attribute[]) : SimpleEntity


-entityType


«control»
SimpleEntityHandler


+create()
+update()
+delete()
+query()


SimpleEntityDaoImpl


sendResponse(response)


recieveRequest(request)


createMessage()


saveFile()


OK


sendResponse(response)


sendReply(responseHttpPage)


sendReply(responseHttpPage)



